

The background of the entire image is a photograph of a rural landscape at sunset. In the foreground, there are several terraced rice fields filled with water, reflecting the warm orange and pink hues of the sky. Beyond the fields, there are dark silhouettes of mountains and hills. The sky is filled with wispy clouds that are also tinted with the colors of the sunset. The overall atmosphere is peaceful and scenic.

The Photobook on the Special Exhibition by Museum of Natural and Environmental History, Shizuoka

Oryza, Rice, and Paddy Fields: We Crop Rice, Rice Changes the World

ふじのくに地球環境史ミュージアム企画展フォトブック

イネ・米・田んぼ

—人がつくる米_米がつくる世界—

ふじのくに地球環境史ミュージアム
Museum of Natural and Environmental History, Shizuoka

企画展示室2
Special Exhibition Room

企画展示室2
Special
Exhibition Room

田んぼ
米イネ
んぼ

人がつくる米
米がつくる世界

The Photobook on the Special Exhibition by Museum of Natural and Environmental History, Shizuoka
Oryza, Rice, and Paddy Fields: We Crop Rice, Rice Changes the World

ふじのくに地球環境史ミュージアム企画展フォトブック

イネ・米・田んぼ

—人がつくる米_米がつくる世界—

ふじのくに地球環境史ミュージアム
Museum of Natural and Environmental History, Shizuoka

はじめに

炊き立てのご飯、それも新米の炊き立てがあると聞いて、嬉しさや幸福感を覚える方は多いでしょう。農村地帯の田んぼの風景に出会うとどこかほっとするという方も、少なくありません。米や田んぼの存在は、それほどまでに私たち日本人の心に深く根差しています。

米は、私たちの主食として、身近でなじみ深い穀物です。米を生む稻や、稻を育む田んぼもまた、多くの方にとっては身近な、ごく当たり前のものでしょう。ただ人間とは不思議なもので、当たり前なものほど実はよく見えていないことがあります。当たり前なので、あえて振り返ることがないかもしれません。

本企画展では、日本人にとって最もなじみ深い食材である米に焦点を当て、自然と人との関係に切り込みます。生活スタイルの変化や地球温暖化が進むなか、これからも私たちは美味しい米を食べ続けることができるのでしょうか。稻作が織りなす美しい自然景観や生物、その風物詩を、次世代に継承していくのでしょうか。私たちにとって、そして自然環境にとって、米とは何か。考えるヒントは、本展の中に散りばめられています。

私たちが生きていく上で避けて通ることのできない「食」。その「食」を支える食材のほぼすべては、自然物に由来します。地球上の生物多様性こそが、私たちの命をつなぎ、生活を豊かにしてくれている——このことは、当たり前のようにいつも身近にある米だからこそ、雄弁に語ってくれることでしょう。

INTRODUCTION

Hearing that there is freshly cooked rice, in particular newly cropped rice, for today's menu, many people feel happy. There are many people who feel a sense of relief when they encounter the scenery of rice fields in rural areas. The existence of "rice" and "rice fields" is so deeply rooted in the hearts of us Japanese people.

Rice is a familiar grain that is our staple food. Rice plants that produce rice and rice fields that grow rice are something that many people are familiar with and take for granted. However, humans are strange things, and sometimes we don't see things as clearly as we take for granted. Maybe it is too ordinary, and thus we don't attempt to look back.

This exhibition focuses on rice, the food most familiar to Japanese people,

and explores the relationship between nature and humans. As lifestyle changes and global warming progress, will we be able to continue eating delicious rice? Will we be able to pass on the beautiful natural scenery, creatures, biodiversity, and landscape created by rice cultivation to the next generation? What does rice/rice cultivation mean to us and to the natural environment? Various seeds for thinking about rice and human activities are scattered throughout this exhibition.

We all cannot avoid to take food for our lives. And, our food is derived from resources from nature, including cultivated ones. Namely, biodiversity on earth is what keeps us alive and enriches our lives. These facts must be eloquently told by rice, being always around us.

凡例

- 1 本書は、ふじのくに地球環境史ミュージアム（以下「当館」とする。）にて2023（令和5）年11月11日〔土〕から2023（令和6）年3月24日〔日〕まで開催した企画展「イネ・米・田んぼ——人がつくる米_米がつくる世界——」の公式フォトブックである。
- 2 本書の掲載資料は会場展示の構成とは必ずしも一致しない。本書に掲載されている資料（写真等）でも、会場に展示されていなかった場合がある。
- 3 本書の原稿執筆は当館研究員（学芸部／学芸課職員：渋川浩一・岸本年郎・中西利典・小川滋之・早川宗志・西岡佑一郎・岡宮久規）が行い、その内の一人（渋川）が編集及びDTPを行った。同企画展の総合監修は佐藤洋一郎（当館館長）が行った。
- 4 本書に掲載した画像の著作権は個々の画像に示した提供者が各々所有し、提供者が示されていないものについては、当館が所有する。

ふじのくに地球環境史ミュージアム企画展フォトブック

イネ・米・田んぼ

— 人がつくる米 _ 米がつくる世界 —

The Photobook on the Special Exhibition by Museum of Natural and Environmental History, Shizuoka

Oryza, Rice, and Paddy Fields: We Crop Rice, Rice Changes the World

目次 Contents

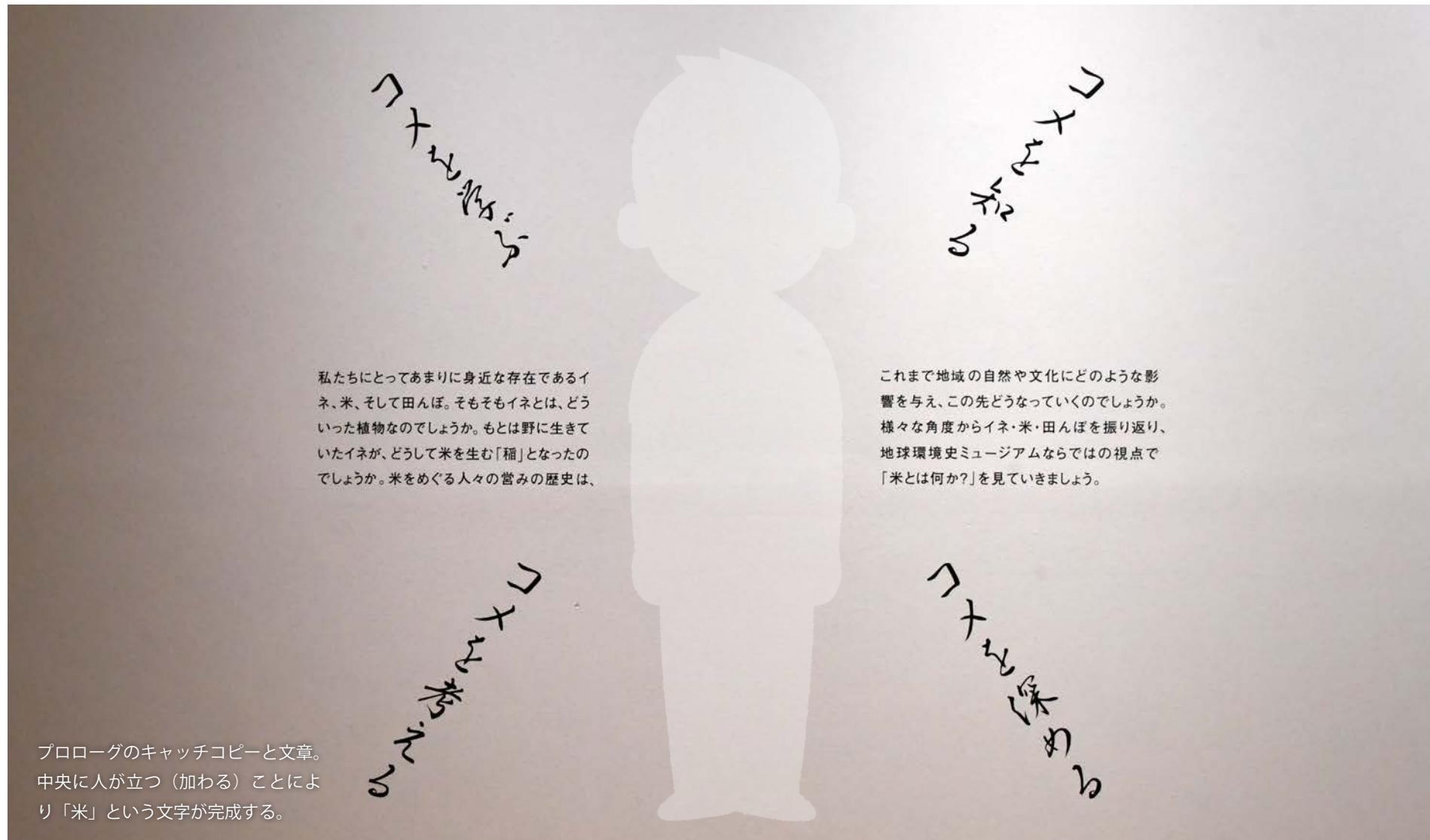
はじめに Introduction	2
展示室概観 Scenes of Special Exhibition Rooms	4
プロローグ Prologue	6
第一章 イネの自然史 Section 1 Natural History of Oryza	7
第二章 米の歴史 Section 2 History of Rice Cropping	11
第三章 環境と稲作 Section 3 Rice Cropping in Various Environment	12
第四章 田んぼと生物多様性 Section 4 Biodiversity in Rice Fields	14
第五章 人・米・未来 Section 5 Human, Rice, and the Future	17
第六章 米に見る東アジア文化 Section 6 Rice in East Asian Culture	18
エピローグ Epilogue	31
解説文英訳 Texts in English	32
主要参考文献 Main References	35
附録 Appendix	36
展示物一覧 List of Exhibited Items	37
広報用印刷物 Printed Matters for Public Information	40
関連グッズ Exhibition-related Goods	43
関連イベント Exhibition-related Events	44

展示室概観 Scenes of Special Exhibition Rooms

企画展示室 2 Special Exhibition Room 2

企画展示室 2 では、第 6 章とエピローグに関する展示を観ることができる。

室内中央の、藁 (わら) を干す「はざかけ」を模した展示什器が印象的。


In the Special Exhibition Room 2, you can view exhibits related to Section 6 and Epilogue. It is impressive that the display fixture in the center of the room, modeled after a "hazakake" for drying straw in the paddy fields.

私たちにとってあまりに身近な存在であるイネ、米、そして田んぼ。そもそもイネとは、どういった植物なのでしょうか。もとは野に生きていたイネが、どうして米を生む「稻」となったのでしょうか。米をめぐる人々の営みの歴史は、

これまで地域の自然や文化にどのような影響を与え、この先どうなっていくのでしょうか。様々な角度からイネ・米・田んぼを振り返り、地球環境史ミュージアムならではの視点で「米とは何か？」を見ていきましょう。

人型シルエットはダミーであり、実際の展示では表示されていない

作物としての稻、植物としてのイネ

Rice as a crop, rice in botany

米は、小麦やトウモロコシと並ぶ世界三大穀物の一つ。世界の米生産量は7億5547万トン^{*1}に及び、直接人の口に入る分で言えば、米は世界で多く食べられている穀物です。米が実る稻は、温暖多雨なアジアを中心に栽培されています。約一万年におよぶ栽培の歴史の中で、世界各地で環境、風土、嗜好に合った稻が品種として選び出され、そのため稻の形態や栽培方法、米の調理の仕方は多種多様なものとなっています。米を生む稻となったイネとは、どのような植物なのでしょうか。

^{*1}2021年の統計（精米換算）

栽培の歴史の中で、世界各地で環境、風土、嗜好に合った稻が品種として選び出され、そのため稻の形態や栽培方法、米の調理の仕方は多種多様なものとなっています。米を生む稻となったイネとは、どのような植物なのでしょうか。

食用イネの粉（もみ）▶

（上から）アフリカイネ *Oryza glaberrima*
アジアイネのインディカ米 *Oryza sativa* ssp. *indica*
アジアイネのジャボニカ米 *Oryza sativa* ssp. *japonica*

国立科学博物館蔵（アフリカイネ）

第一章 イネの自然史

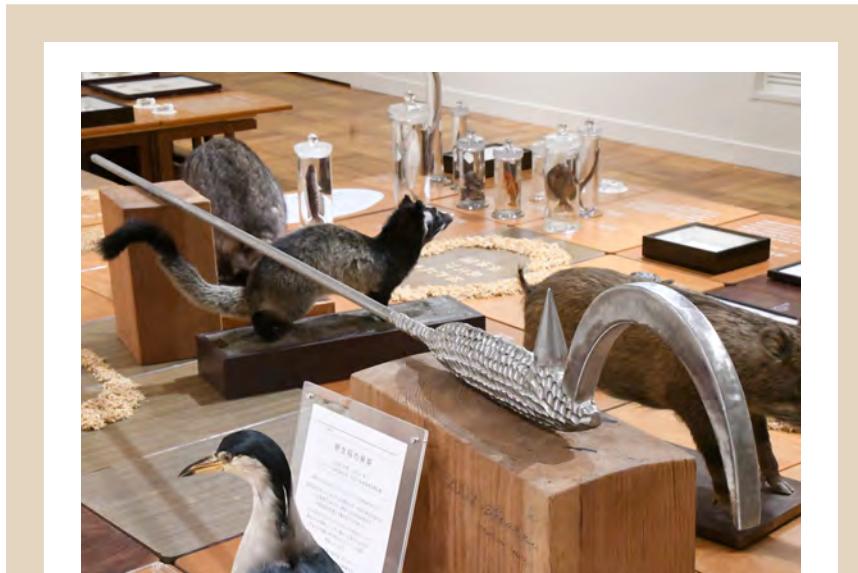
Section 1 Natural History of *Oryza*

イネ属大集合 Specimens of rice plant of *Oryza*

イネ属は全23種。そのうちの17種（アジアイネはインディカとジャボニカの2群）を紹介します。

▲イネ属各種の腊葉(さくよう)標本 (p.8 ~ 9)

1 オリザ・アラタ <i>Oryza alata</i>	7 オリザ・グラニュラタ <i>Oryza granulata</i>
2 オリザ・オーストラリエンシス <i>Oryza australiensis</i>	8 オリザ・ラティフォリア <i>Oryza latifolia</i>
3 オリザ・バルシイ <i>Oryza barthii</i>	9 オリザ・ロンギグルミス <i>Oryza longiglumis</i>
4 オリザ・ブラキアンサ <i>Oryza brachyantha</i>	10 オリザ・ロンギスタミナタ <i>Oryza longistaminata</i>
5 オリザ・エイチングリ <i>Oryza eichingeri</i>	11 オリザ・メイエリアナ <i>Oryza meyeriana</i>
6 オリザ・グラニデイグルミス <i>Oryza gradioglutis</i>	12 オリザ・ミニュタ <i>Oryza minuta</i>
13 オリザ・オフィシナリス <i>Oryza officinalis</i>	
14 オリザ・ブンクタータ <i>Oryza punctata</i>	
15 オリザ・ルフィボゴン <i>Oryza rufipogon</i>	
16 アフリカイネ <i>Oryza glaberrima</i>	
17 アジアイネ（インディカ） <i>Oryza sativa</i> ssp. <i>indica</i>	
18 アジアイネ（ジャボニカ） <i>Oryza sativa</i> ssp. <i>japonica</i>	



第一章 イネの自然史 Section 1 Natural History of Onyza

イネの基本構造 Morphological characteristics of rice plant

イネ属各種の標本を見比べると、葉や花の基本構造が同じであることがわかります。茎は円柱形で中が空っぽです。そのため、タケのようにしなやかで軽い茎は急激に成長することを可能にしています。花は花粉を風で飛ばす風媒花。虫に花粉を運んでもらう必要が無いことから、花びらは退化して地味です。小花は外側に護穎(ごえい)、内側に内穎(ないえい)をつけ、後に糊(もみ)となり種子(玄米)を守ります。

ステンレス彫刻
野生稻の發芽

A stainless steel sculpture, "Germination of wild rice"

田辺 光彰 TANABE, Mitsuaki
2002

日吉の森庭園美術館蔵

芒の発達した野生イネ

野生のイネをモチーフにしたステンレス彫刻作品です。世界各地で減少の一途をたどる野生イネ。作者の田辺光彰(たなべ・みつあき)氏はその重要性に気づき、野生イネの自生地保全を自身の彫刻を通じて働きかけてきました。「野生稻の發芽」は、そんなメッセージをもった作品の一つで、野生イネが発芽し、大きく曲がった根となる部分が今まさに地面に突き刺さろうとしている様を表現しています。長く伸びた棒状の部分は「芒(のぎ)」です。野生イネにはよく見られる特徴ですが(左写真参照)、いま私たちが食べる米の多くは、長年の品種改良によりこの芒が短く痕跡的になっています。本作品は「日本・ルーマニア文化交流 2002 年展」*として行われた展覧会で、ブランクーシー奨励賞を受けました。

* 主催：日本ルーマニア文化交流協会・在日ルーマニア大使館
後援：外務省

静岡県の水稻奨励品種

Recommended varieties of paddy rice in Shizuoka Prefecture

奨励品種とは、各県が決めた県内に普及すべき優良な品種のことです。静岡県では「コシヒカリ」の他にも、コシヒカリの粘りが強くなった「ミルキークイーン」、夏の暑さに強い「にこまる」、酒米品種の「誉富士（ほまれふじ）」や「令和誉富士（れいわほまれふじ）」など、県内の栽培環境に合った多数の品種が育てられています。草丈や株の大きさ、稲穂の長さ、粒（もみ）の大きさ、収穫時期などは品種により様々です。ここでは今年度に静岡県農林技術研究所で試験栽培された奨励品種を紹介します。

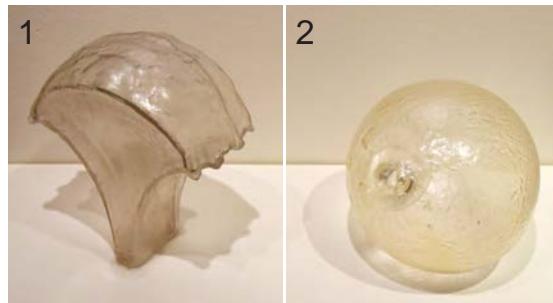
在来品種の粒（もみ） Native varieties of unhulled rice

稻の品種改良は、最近は国や都道府県の研究機関が担うことが多いですが、20世紀に入る頃までは民間主導で行われてきました。江戸時代から昭和中頃までは一軒の農家が複数の品種を持っていたとされ、その数は膨大でした。各地でわずかに現存するこれら品種を「在来品種」と呼びます。草姿や粒の形態は様々で、例えば粒に長いひげのような芒（稈）が生えた品種など、現在の品種とは異なる特徴が見られるものも少なくありません。

◀ 在来品種の粒（カッコ内は主な生産地）

1 都（兵庫・岡山）	3 伊勢錦（三重）	5 野条穂（兵庫）
2 白玉（山口・福岡）	4 山田穂（兵庫）	6 陸稻農林 1号（関東地方南西部）

歴史を探る手がかり


Clues to explore history

野に生きていたイネが米を生む「稻」となり、海を渡って日本人の米作りが始まりました。弥生時代になると、水田稲作が広まつたことで暮らしの中心となった米作りは、のちに「通貨」として人々の社会生活を支え、時には戦の種となり、現代でも私たちの

食卓に欠かせない食料資源を供給しています。米の「化石」をたどることで見えてきた日本人の米作りの歴史。今から三千年以上前までさかのぼってみましょう。

イネの存在を探る Exploring the existence of rice

遺跡から見つかる炭化米は、日本人が米食をしていたかどうかを探る決定的な証拠となります。一方、炭化していない米やイネの葉は簡単に分解されてしまうので、化石としては滅多に残りません。当時すでにイネが存在したかどうかを知る別の手がかりとして、一つは葉の細胞に含まれる植物珪酸体、もう一つは花粉があります。どちらも頑丈な物質でできているため、長い間保存されていることがあります。

▲「歴史を探る手がかり」となるもの

- 1 ファン型珪酸体（3000倍模型）
- 2 イネ花粉（3000倍模型）
- 3 弥生時代の炭化米（静岡市長崎遺跡） 静岡県埋蔵文化財センター所蔵
- 4 弥生時代の炭化米（静岡市長崎遺跡） 静岡県埋蔵文化財センター所蔵
- 5 弥生時代の炭化米（浜松市角江遺跡） 静岡県埋蔵文化財センター所蔵
- 6 平安時代の炭化米（静岡市尾羽廃寺跡） 静岡県埋蔵文化財センター所蔵
- 7 鎌倉時代の炭化米（静岡市本郷坪遺跡） 静岡県埋蔵文化財センター所蔵

米食の証拠を探る Exploring evidence for rice-eating habit

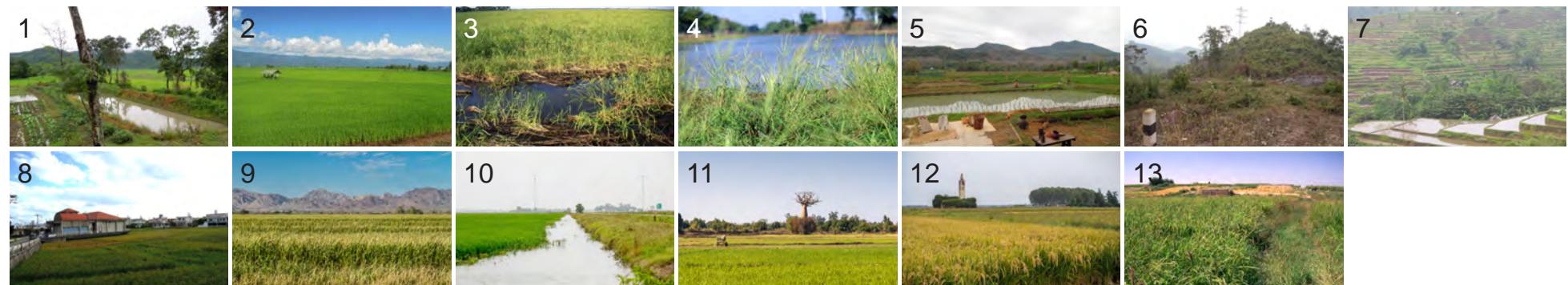
全国の弥生時代の遺跡からは炭化米や土器に付着した焦げ跡が見つかっています。炭化米には、粉（もみ）殻が固まって土の中で炭化したものや調理によって焦げた米があり、また米粒として単体で見つかる場合、ブロック状に集合して見つかる場合があります。静岡県内では登呂遺跡（駿河区）をはじめ、長崎遺跡（清水区）、角江遺跡（浜松市西区）などから弥生時代後期（西暦100～300年）の水田跡と炭化米が見つかっています。

米の品種を探る Exploring varieties of rice

日本で育てられてきたイネは主に日本米（ジャポニカ）ですが、外見や遺伝子の特徴からさらに細かく熱帯ジャポニカと温帯ジャポニカに分けることができます。遺跡から出土した米のDNAを分析すると、弥生時代から中世にかけて静岡県では熱帯ジャポニカと温帯ジャポニカの混在した稲作が行われていた様子が見えてきました。熱帯ジャポニカは、熱帯の焼畑地に適応している品種群です。

米作りの始まりを探る Exploring the beginnings of rice cultivation

水田稲作が伝わったのは弥生時代と言われていますが、それ以前に米作りが行われていた可能性はあるのでしょうか？今のところ、炭化米やイネと断定できる花粉、珪酸体といった「米の化石」は縄文時代の土壤から見つかっていません。一方で、縄文時代晩期の土器からイネやアワ、マメ類などの痕跡が発見され、狩猟採集民と考えられてきた縄文人が作物栽培をしていたと考える研究者がいます。東南アジアの焼畑地のように稻は水田がなくても育つので、種子をまいて米作りをしていた縄文人がいても不思議ではないのです。日本の米作りの歴史を知るために、次は世界の稲作に目を向けてみましょう。



環境を巧みに使う稲作

Rice cultivation, skillfully fitting local, natural environment

1万年ほど前に中国の長江流域で始まったとされる稲作は、現在ではアジアの熱帯域や温帯域を中心に世界中で見ることができます。稲と言えば田んぼ（水田）を想像される方が多いかもしれません、稲作の方法は、それだけではありません。世界

各地それぞれの環境に合わせて、様々な品種も誕生しています。世界の稲作や、そこから生み出される米の多様性は、地球上の様々な環境で暮らす私たち人の営みの歴史が作り上げてきたものなのです。

世界の稲作の多様性

Diversity of rice cultivation in the world

アジアの中でも水を得にくい山地では、伝統的な焼畑農業で陸稲（おかば、りくとう）と呼ばれる稲が作られています。対照的に、雨季に水かさが増して氾濫原（はんらんげん）となるような熱帯の低湿地では、水位の上昇に合わせて丈の長さが数メートルにもなる浮稻（うきいね）と呼ばれる稲が作られています。他にも、見渡す限り続く大農場で大型機械を導入して行われる欧米の稲作など、それぞれの地域の環境を巧みに使う稲作が世界各地で行われています。

世界の稲作風景

1 インド（インパール郊外）	8 日本（沖縄県金武町）
2 タイ北部（チェンライ）	9 オーストラリア（ニューサウスウェールズ）
3 タイ中部（プラチナム）	10 アメリカ合衆国（アーカンソー）
4 タイ中部（アユタヤ）	11 アフリカ
5 ラオス（ルアンパバーン郊外）	12 イタリア（ノヴァーラ郊外）
6 ラオス（ルアンナムター）	13 中央アジア
7 インドネシア（バリ）	

世界の米の多様性

Diversity of rice grains and ears in the world

ひとくちに米と言っても、その粒は細長いものから丸々としたものまで様々です。アジアイネだけでも、ジャボニカ米 (*japonica*) とインディカ米 (*indica*) とでは形が違うと感じられる方も多いでしょう。形だけでなく、「ねばり」「香り」など食味も様々で、世界各地それぞれにその土地の米の特性に合わせた調理法が知られています。ここでは、そんな世界各地の米粒や稻穂を紹介します。それぞれの色や形の違いが、判りますか？

▲ 世界各地の様々な米粒と稻穂

1 スペイン産米	5 オーストラリア産米
2 イタリア産米	6 アメリカ合衆国（カリフォルニア）産米
3 タイ産米	7 稻穂各種（左から）ラオス産（5束）、日本産（3束）、タイ産（2束）、ベトナム産（2束）
4 日本産米（コシヒカリ）	

水稻

Paddy rice

水を張った水田で栽培される稻のことを水稻（すいとう）と呼びます。抽水（ちゅうすい）植物というイネ本来の特徴に合わせた方法で栽培される稻で、水稻が栽培されている土壤は、粒子が細かく粘土質な、べちょべちょ、ぐちゃぐちゃという表現がふさわしいものとなっています。春に水を張り、初夏に水を抜き、穂が出る直前に水を入れ、収穫前に水を抜き、そして晚秋に耕すという繰り返しの農作業が、この独特な土壤構造を維持しているのです。

陸稻

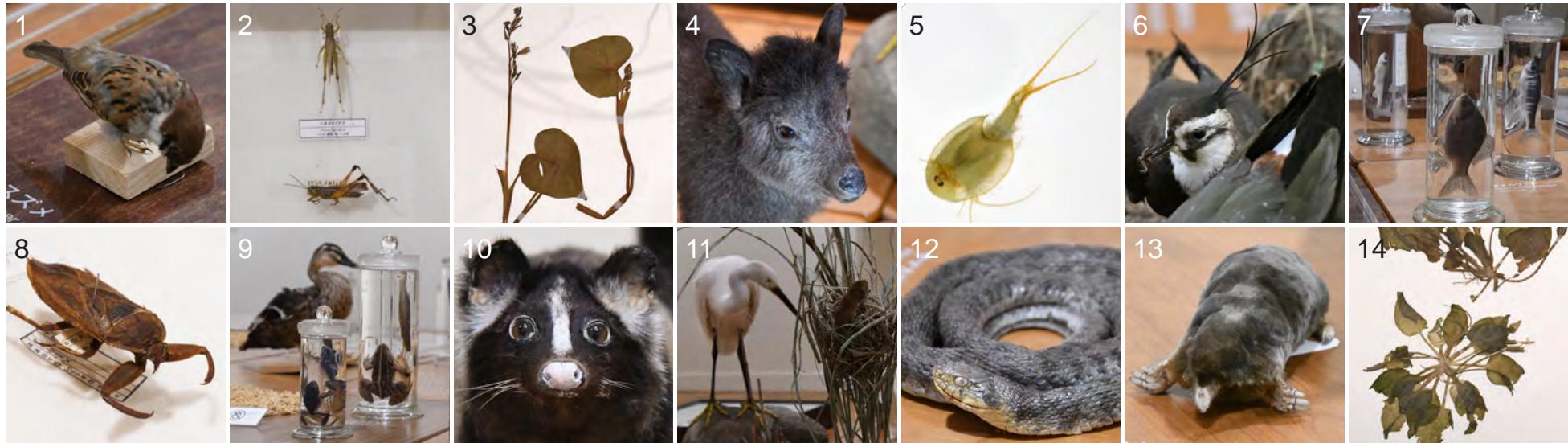
Upland rice

畑で栽培される稻のことを陸稻と呼びます。水の得にくい土地でも栽培できる、直播きできるため代播きや田植えの手間がいらないなどの利点があり、山地を中心にアジア各地でも栽培されています。ただ、水田で育てる水稻よりも収穫量や食味がやや劣り、例えば日本では稻作生産量の数パーセント程度しか作られていません。陸稻が栽培されている地域の土壤を見ると、水田のような粘土質なものだけでなく、火山噴出物由来の砂質土壤などで作られる事例もあります。

浮稻

Floating rice

浮稻（うきいね）は東南アジアや南アジア、アフリカ、南米に見られる特殊な稻で、雨季に水深が数mにもなるような大洪水が発生する低湿地帯で栽培されます。そうした場所でも、水上に葉を出した状態を保つため、水位の上昇に合わせて茎をどんどん長く成長させることができます。水位上昇時には1日で20～25cmも伸び、大きなものでは長さ数mに達します。水位が下がると水面を漂っていた葉や茎が倒れ、立ち上がる稻穂に実る米を収穫できます。



田んぼの生態系の変化

Historical changes of ecosystem in the rice fields

田んぼや田んぼにすむ生物は、この三千年間に大きく変化しました。当初はいろいろな生物が暮らす環境でしたが、米の生産力向上が図られ、さらに管理も厳しくなる江戸時代には、稻以外の生物は遠ざけられ「招かれざるもの」という扱いになって

いきます。稻作への影響が小さいものはまだしも、中には雑草、害虫、病原菌として農家を苦しめるようになるものも現れます。ここでは田んぼを舞台に繰り広げられてきた人と生物の関係を見ていきます。

田んぼは和食の原点

Rice fields as the origin of Japanese cuisine

田んぼやその周りの水辺には、もともと魚やカエル、貝、昆虫など多くの生物がすみ、それを求めてより大型の鳥や獣も訪れていました。つまり田んぼは、米だけでなく、動物性タンパク質の生産の場でもありました。和食の代表である「寿司」の原点「鮓」(熟れ鮓)の誕生も、こうした魚と米との出会いにあります。田んぼの昆虫でも、イナゴやバッタは普通に食用とされていました。昨今話題の昆虫食ですが、日本人は古来より昆虫を食べていたのです。

▲▶ 本章で展示した田んぼの生物標本（例）（p.14～15）

1 スズメ	8 タガメ
2 ハネナガイナゴ（上）とツマグロバッタ（下）	9 シュレーゲルアオガエル（左）とトノサマガエル（右）
3 ミズアオイ	10 ハクビシン
4 ニホンカモシカ	11 コサギ（左）とカヤネズミ（右、巣内）
5 タイリクカブトエビ	12 ヤマカガシ
6 タゲリ	13 アズマモグラ
7 アブラハヤ（左）・ギンブナ（中）・オイカワ（右）	14 ミズオオバコ

15 ゲンゴロウ
16 スクミリンゴガイ
17 アカネ属の「赤とんぼ」
18 ツトガ
19 田んぼのカエル類
20 イノシシ

生物種の減少

Decline of species diversity

田んぼにすむ生物の多くは、かつてはどこにでもたくさん見られる普通種でした。とくに近代農業が導入された20世紀中頃以降、農地整備などによる環境の変更、農薬・除草剤の影響、周囲の里山環境からのため池や雑木林の減少、外来種による捕食の影響などによって、多くの生物が減少していきます。いまや絶滅危惧種とされる魚や水生昆虫も少なくありません。例えばゲンゴロウやスジゲンゴロウは、静岡県から既に絶滅したと考えられています。

田んぼのインベーダー

Invaders in rice fields

田んぼには、現代になって日本に侵入した外来種もくらしています。特定外来生物となったアメリカザリガニは1920年代に、イネの害虫イネミズゾウムシは1970年代にどちらも北米から持ち込まれ、ジャンボタニシと呼ばれるスクミリンゴガイは1980年代に台湾から渡来したものです。こうした外来種は、在来種の減少と対照的に、現在も繁栄しその勢力を拡大しています。古くはイネの伝来とともにやってきた「史前帰化植物」も、田んぼやその周辺に見られます。

16

農薬の影響など

Influence of pesticides

「赤とんぼ」とはアカネ属のトンボの一部の愛称で、田んぼではアキアカネをはじめ7種が繁殖しています。秋の風物詩であった赤とんぼは、近年全国的に激減しています。まず1970年頃に灌漑システムの近代化により、ミヤマアカネが減少しました。1990年代にはノシメトンボやアキアカネが減少し始めましたが、これはネオニコチノイド系の農薬の普及が関連していると考えられています。現在は、日本各地で赤とんぼが危機的な状況となっています。

17

雑草・害虫・病原菌

Weeds, pests, and pathogens

稲作にとって「招かれざるもの」の御三家は、雑草、害虫、病原菌です。雑草はイネより生育旺盛で、かつて草取りは、稲作の作業の中でも最も手のかかるものでした。ウンカなどの害虫や、いもち病などの病原菌も、ひどい場合はいくつもの村の収穫を皆無にしてしまうほど恐ろしい存在でした。稲作の歴史は、彼らとの闘いの歴史そのものです。しかも彼らは、排除しようとする力を強めれば強めるほど悪質化してきた、じつに厄介な存在なのです。

19

カエルの地域絶滅

Regional extinction of a frog subspecies

ナゴヤダルマガエルは西日本固有のカエルです。もともと湿地にすんでいましたが、人間が稻作を始めたことで水田が代わりのすみかになりました。このような生物を「農業依存種」といいます。静岡県は本亜種の分布東限にあたります。1980年代までは県中部でも見られましたが、水田の区画整備や耕作放棄、農薬により急速に減少し、分布域はわずか40年で約90kmも狭まってしまいました。この愛らしいカエルが静岡で見られなくなる日も近いかもしれません。

増えた獣が田んぼを襲う

Rice fields, attacked by increased beasts

稻作を含む農業全体を脅かすもうひとつの「招かれざるもの」は、シカ、イノシシ、クマなどの大型哺乳類です。彼らは、農作物に害を与えれば、害獣と見なされてしまいます。その被害はすでに奈良時代頃からあるようで、経済的な損失はもちろん、農家の生産意欲を削ぐという深刻な被害をもたらします。農作業する人に対する直接の脅威にもなりかねません。獣害は昨今も少なからず生じており、田んぼの周りを電気柵で囲うなどの対策が進められています。

20

田んぼの後は街か、森か What will be rice fields changed -- the city or the forest?

田んぼの面積は、全国的に年々減少しています。その原因是主に宅地などへの転用と耕作放棄です。田んぼが放棄された後の休耕田は、一時的に生物多様性豊かな湿地として存在することがあります。時間が経つと乾燥化し、草原から森林へと変わっていきます。その過程で、もともと田んぼに多かった湿地や氾濫原を好む生物は消えています。生態系や生物多様性の豊かさが失われるのではなく、コンクリートで整地された場合だけではないのです。

田んぼの未来

The future of rice fields

未来の米作りの可能性には二つの方向性がありそうです。一つは、スマート農業などを推進し、農作業の効率化や負担軽減を図ることで、生産性を挙げていく方向。もう一つは、消費者が生産者と協力して無（減）農薬で行う米つくりを推進するなど、「小規模循環型」の稻作の推進です。地産地消の米版といってよいでしょう。これには家庭から出る生ごみや家畜の排せつ物などを地域内で処理して肥料にするなどの取り組みも含まれます。

地球温暖化と品種改良

Selective breeding against global warming

近年、気温上昇による米の品質低下が問題になっています。ふだん私たちが口にする「うるち米」の粒の色は透明感のある乳白色ですが、穂の成長期に高温にあうと生育不良を起こして白く濁り、見かけも悪くなってしまいます。日本の米の代表格「コシヒカリ」は高温に弱く、近年の気温上昇により年々生産量が少なくなっています。地球温暖化の進行により美味しいお米が食べられなくならないよう、「高温耐性」を持つイネの品種改良が進められています。

スマート農業

Smart agriculture

ロボット、AI、IoTなど先端技術を活用する「スマート農業」は、近年、稻作にも用いられるようになりました。それにより農作業の効率化や技術の継承、収量の増加、生産コストや環境負荷の増大回避、さらには農業従事者の減少という深刻な課題の解消も期待されています。ロボット農機による田植えや稻刈り、ドローン空撮画像による生育管理、水管理システムによる水質・水量調整などといった手間のかからない稻作が、近い将来、実現するかもしれません。

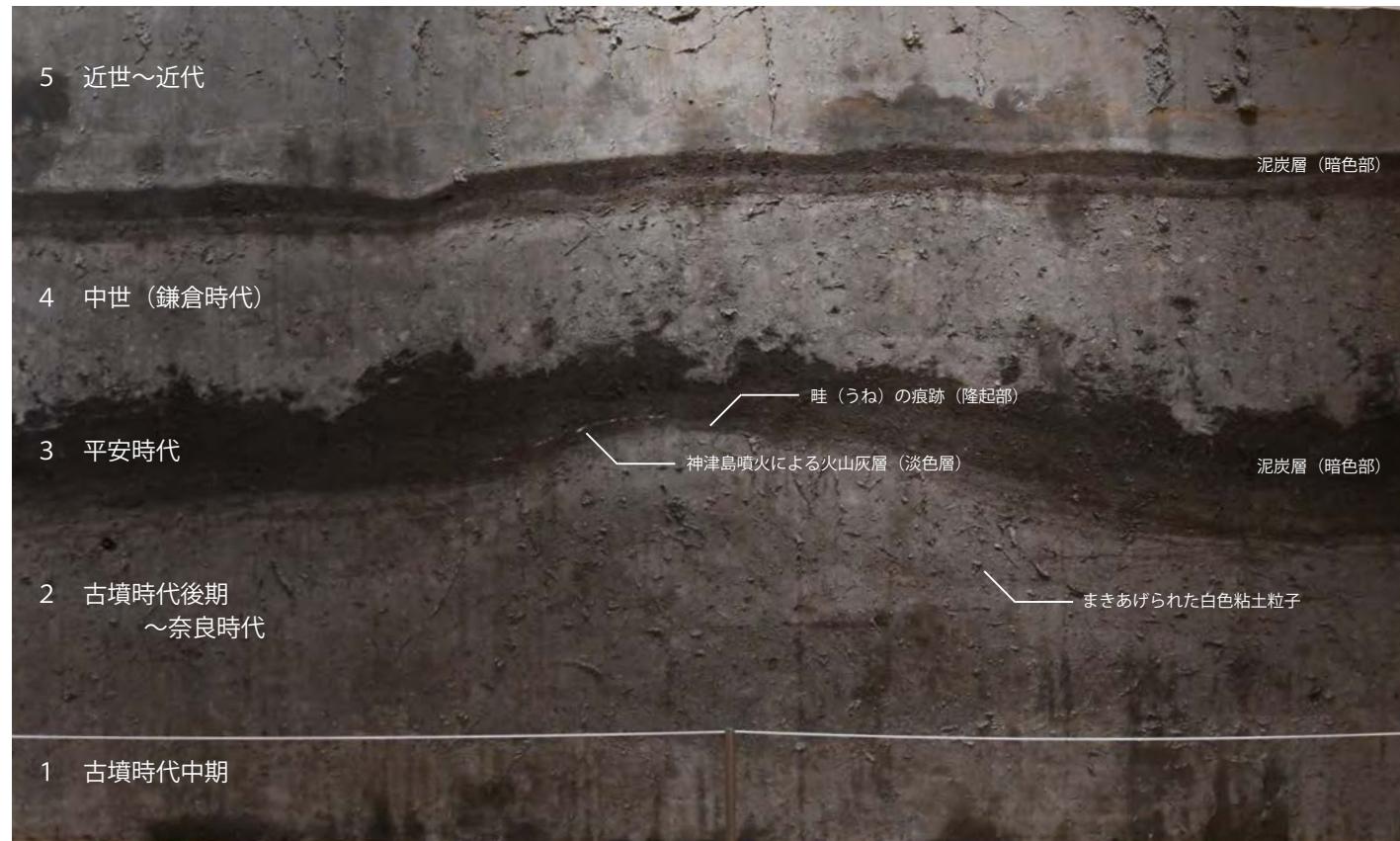
持続可能な未来と米

Sustainability in future of rice cultivation

日本では組織的な水田稲作が始まって以来、水田の開削と、洪水や火山降灰などによる廃絶とを繰り返してきました。ここで紹介する地層断面では、奈良時代の水田を土台にして、その上に平安時代から近代にかけて何度も水田が作られた「自然に沿う」営みの歴史を見ることができます。他方、

欧州では自然科学の成果をくむ近代合理主義、すなわち自然の法則を探求し支配する思想が生まれました。日本でも明治時代以降はこの考えが導入され、工業的な水田稲作が浸透した結果、いま日本の水田生態系の多くは多様性を失い、水田稲作自体の持続可能性も失われつつあります。

6 未来


5 近世～近代

4 中世（鎌倉時代）

3 平安時代

2 古墳時代後期
～奈良時代

1 古墳時代中期

◀ 静岡県上土遺跡における水田遺構の地層断面（剥ぎ取り標本）

静岡県埋蔵文化財センター所蔵

1 古墳時代中期 この地では弥生時代中期にすでに稲作が行われていたと推定されています。しかし本資料の最下部の古墳時代中期頃には、自然堆積層に厚く覆われ、稲作の痕跡は確認できません。

2 古墳時代後期～奈良時代 水田耕作土（やや暗色の層）の所々に耕作でまきあげた白色粘土粒子が見られ、盛んな稲作が伺えます。奈良時代の区画整理事業による「条里型水田」の層も、上部に見られます。

3 平安時代 地下水位の上昇による湿地化で形成された泥炭層（より暗色の層）が見られ、稲作の痕跡はありません。この時代の層には、神津島の噴火（838年）による火山灰層も確認できます。

4 中世（鎌倉時代） 中世には再び、水田耕作土の層が現れます。地下水位が下がり乾燥した段階で、奈良時代の畝を約400年間の断絶を経て復旧し、同じ場所で再開発を進めた様子が見て取れます。

5 近世～近代 中世の水田耕作土の上には再び泥炭層が現れ、さらにその上には洪水による自然堆積層が見られます。またしても断絶したこの地での稲作は、近世に復旧し、近代まで続きます。

6 未来 この地で自然に沿いながら暮らし、米を食べる——この資料が教えてくれるそんな「当たり前」を、私たちはこれからも続けていくことができるのでしょうか。

米と食

Rice as food

食材として多彩な姿を見せる米。日本人にとって、米は主食として欠かせないものであり、他にも酒や甘味など嗜好品として、調味料として、さらには新たな食品を生みだす素材などとして、古来より重用されてきました。すなわち米は、私たちの豊かな食生活を支える主役であり、名脇役であり、良い仕事をする裏方役でもあります。稻作発祥の地である中国、そして韓国や日本など東アジア地域での「食材としての米」を見ていきましょう。

米（左）と小麦（右）の栽培風景

東アジアの米利用 Rice production in East Asia

米は、人が直接口にするもの^{*1}としては地球上で最も多く食べられている穀物です。世界の米の生産量は8億トン弱^{*2}。アジアが最も多く（上位20カ国うち15カ国、全生産量の88.6%）、中国^{*3}が世界最多（2億1284万トン、27.0%）で日本は12位（1052万トン、1.3%）、韓国は16位（521万トン、0.6%）です。稻は温暖な気候を好むため寒冷地での生産が困難でしたが、寒さに強く、収穫を早める品種改良などにより、いまや北海道なども日本有数の「米どころ」となっています。

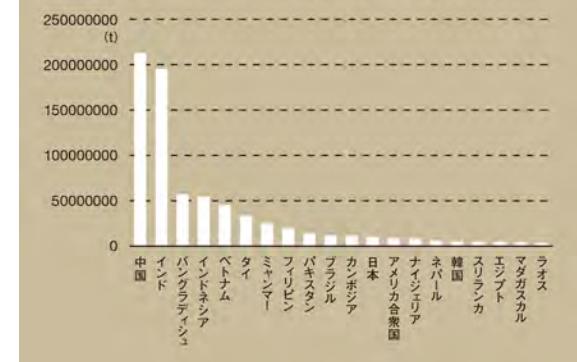
*1粉や飼料などにせず、ただ炊くなどしてそのまま食べる分

*2集計値はいずれも FAOSTATによる2021年分のデータに基づく（もみ換算）

*3台湾・香港をのぞく


米に見る東アジア文化

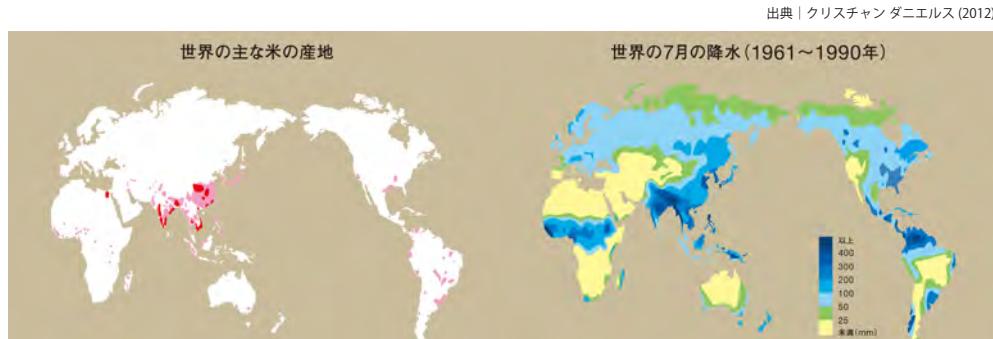
Rice in East Asian culture


韓国や中国南部の稻作地帯を歩いていると、どこか日本にいるような錯覚を覚えることがあります。食文化は言うに及ばず、景観も似ているからでしょう。芸術の素材として、さらには祭祀や儀礼の対象としても、米食や稻作の文化には日中韓3国の

間に強い類似性があります。これら文化に触れていると、東アジアにおける人々の交流の歴史の長さを感じることができます。本章では、東アジア文化に多大な影響をもたらした米について、「食」と「暮らし」の視点から振り返ります。

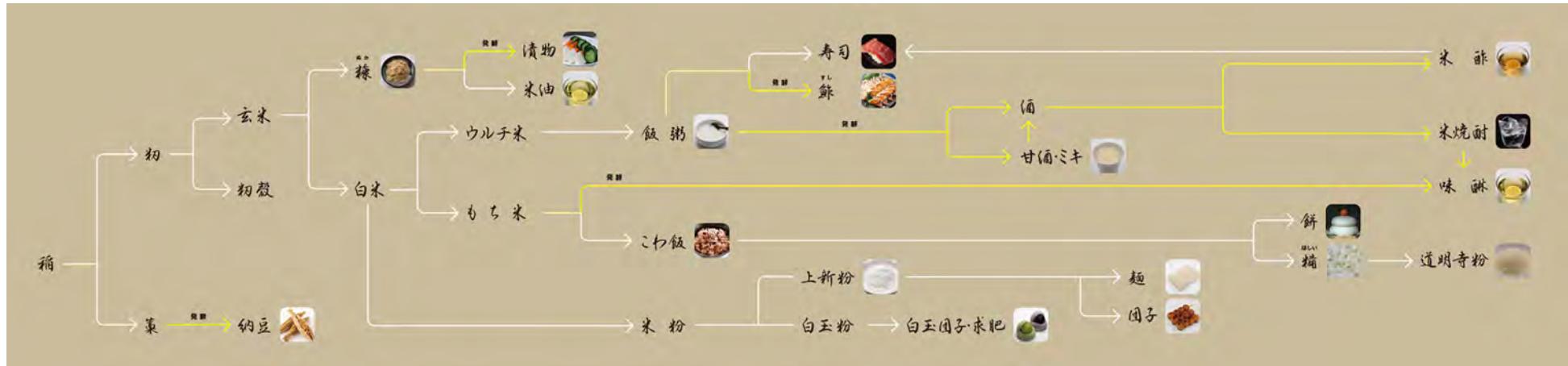
FAOSTATの統計データを基に作図

2021年の各国米生産量比較(上位20カ国)



第六章 米に見る東アジア文化

Section 6 Rice in East Asian Culture


▲ 様々な穀物 1 米 (こめ) 2 小麦 (こむぎ) 3 大麦 (おおむぎ) 4 粟 (あわ) 5 稚 (ひえ) 6 麻 (あさ) 7 糜 (きび) 8 蕎麦 (そば) 9 大豆 (だいず) 10 小豆 (あずき)

なぜ米は穀物の中で特別な存在となったのか？

Why has rice become so special among grains?

世界三大穀物の一つとされる米。多彩な穀物の中でも米は生産性が高く、一粒の種子から半年もたたずに数百粒もの米を収穫することができます。生育に多くの水を必要とし、温暖な気候を好む生態的特性は、西南日本などアジア各地の環境にも適合します。その一方で水田稲作は多くの人手を要し、出来・不出来が自然環境にすぐ左右されます。そこから次第に人々の中で共同体意識や自然への畏敬心が育まれ、米が特別な存在になっていったのかもしれません。

米料理の系譜

Lineage of rice cuisine

一粒のお米には七人の神様がいる——人々は古くから、稻や米を大切に、徹底的に、様々な形にして利用してきました。糀や脱穀した粉殻は肥料、家畜の飼料・敷料などに、精米により分けられた糠と白米は、多彩な食品へと姿を変えていきます。白米が炊飯されそのまま食されることはもちろん、時には粉にされ、時には発酵させ、時には他の食品を生みだす素材に用いられながら、私たちの食卓や団欒を豊かに彩ってくれます。

▶ 米や糀を利用した食材・食品 (p. 20 ~ 21) ●は発酵を伴うもの

1 白米 (ごはん)	11 味醂 (みりん)	21 白米 (ごはん)
2 糠 (ぬか)	12 こわ飯 (赤飯)	22 餅
3 漬物	13 餅	23 米麵 (フーティウ)
4 米油	14 糺 (ほしい)	24 味醂 (みりん)
5 飯粥 (いいがゆ)	15 道明寺粉	25 日本酒とマッコリ
6 寿司	16 上新粉	
7 鮭 (すし)	17 米麵	
8 甘酒	18 団子	
9 米酢	19 求肥 (ぎゅうひ)	
10 米焼酎	20 糀 (ぬか)	

21

白米 (ごはん)

White rice

米と言えば、まず炊き上げた白米でしょう。シンプルながら最も一般的な調理法です。日本や韓国の米の多くはジャポニカ米で、中国ではジャポニカ米やインディカ米など多様な米が食べられています。日本では「硬くてぱさぱさ」と評価の芳しくないインディカ米ですが、それは調理次第のこと。タイなどでは米を茹で麺のように多量の水で茹でており、ジャポニカ米とは感覚が異なります。またインディカ米にももち米はあり、一概に「ぱさぱさ」とも言えません。

米麺・米粉など

Rice flour products, e.g., noodles

日本ではそれほど一般的でない米麺。中国南部では「米粉」(ミーフェン、福建省や台湾での発音ではビーフン)と呼ばれ主食の一つとされる食材で、近隣のベトナムでも、断面の形や太さ、食感などが異なるフォー(Phô)やブン(Bún)、フーティウ(Hủ tiu)など多様な米麺が楽しめます。米麺はグルテンフリーという観点からも注目されていますが、米を粉にして利用する文化はアジアとアフリカで発達し、小麦粉が主体の欧米には見られません。

飲み物になる米

Rice as beverages

甘味をささえる米

Sweets made by rice

もち米を搗(つ)くと餅になり、うるち米粉を練ると団子になります、白玉粉に砂糖や水あめを加えて練り上げると求肥になります。米がこれら練り物状になると、途端に甘味処で欠かせない食材となるから不思議です。「羽二重餅」や「生八つ橋」、新顔の「フルーツ大福」など求肥を用いた和菓子はもちろん、餅や団子を甘く炊いた小豆などと合わせた「お汁粉」や「串団子」、「大福」、さらに「せんべい」「おかき」「あられ」といった焼き菓子なども、和を存分に感じさせます。

22

調味料になる米

Rice as seasoning

米や米酒、米麹などが原料の調味料も少なくありません。もち米に米麹やアルコールを加えて熟成させ、デンプンが分解されて甘みを生じたものが味醂で、醸造酒を酢酸発酵させると味酢になります。大豆に米麹を加え発酵させる米味噌(白味噌など)は、その生産量が麦味噌や豆味噌(八丁味噌など)をはるかにしのぎます。和食の定番調味料ばかりですが、もとは中国から伝来し(味醂は日本発祥説もあり)、後に日本で独自に花開いたものとされています。

白米にちょっと手を加えて

A little modified white rice cuisine

炊き上げた白米に少し手を加えたメニューも、アジアでは各国多彩です。塩をして握るだけで至高を感じさせる日本のソウルフード「おにぎり」、中華料理の「チャーハン」、韓国料理の「ビビンバ」などは、それぞれの国の調理スタイルを端的に感じさせるもの。他にもアジア各地の朝食の定番「粥」、もち米を蒸かした「こわ飯」(赤飯やおこわ、粽)、さらにそれを搗いた「餅」など、この地域で「米が主役」の身近な食は数知れません。

新たな食品を生みだす米

Rice as a material creating new foods

米を他の食材に寄り添わせ独特な食品を生みだすことも、アジアでは古くから行われてきました。日本では滋賀県特産の「鮒鮓(ふなずし)」に代表される「なれ鮓」は、塩と米で魚を漬け込み乳酸発酵させたもの。野菜を米糠に食塩水などを合わせ熟成させた糠床に漬けて乳酸発酵させた漬物(糠漬け)や、煮豆を藁束で包み(納め)、藁についた納豆菌で発酵させる納豆なども、稻や米ととの長く深い関わりを感じさせる伝統技術の賜物です。

暮らしと米

Rice and our lives

米が「生きる」場は、食卓や宴席ばかりではありません。米や稻作の様子は古くから歌に詠まれ、描かれ、日本の創世神話でも重要な役割を担ってきました。神々や祖先に五穀豊穣を祈り、実りに感謝する祭祀は、東アジア各地で継承され、日本や韓国、中国におけるその類似性は、文化交流の歴史を反映しています。時代とともに変化する稻作は身近な景観を変えていき、一方で各地に残される美しく独特的な稻作風景は、地域の観光資源としても注目されています。

創世神話にみる米

Rice in the creation myth

現存する日本最古の書物『古事記』には、大宜都比売（おおぎつひめ）の死後に稻や蚕、粟、小豆、麦、大豆が生まれたことが記されており、同様の話は『日本書紀』にもあります。日本では創世の頃より米が重要な穀物であったと認識されていたのでしょう。一方、韓半島の神話では、高句麗の始祖・東明聖王（朱蒙）が建国する際に母親から穀物をもらい、麦だけを忘れてしまう逸話があります。このことは、かつて韓半島で稻よりも麦の方が主要な作物であったことを反映したものと思われます。

◀ 今野可啓『斎庭の稻穂』* | 神宮農業館（伊勢神宮）所蔵

*斎庭（ゆにわ）の稻穂の神勅（しんちょく）

『日本書紀』に記された三大神勅の一つ（神勅：神のお告げ・命令）。天照大御神（あまたらすおおみかみ）が孫の邇邇芸命（ににぎのみこと）に斎庭（神を祀るための神聖な場所）の稻穂を授け、葦原の中つ国（日本）に降した。

第六章 米に見る東アジア文化

Section 6 Rice in East Asian Culture

御田植祭 (おたうえ - まつり)

Rice planting festival

「御田植祭」は日本各地の寺社に古くから伝わる神事で、田植えに先立ち、神田に稻の早苗を植えることでその年の豊作を祈るもので。静岡県周智郡森町にある小國神社では「小國神社田遊び」と称する御田植祭が340年間以上継承されており、静岡県指定「無形民俗文化財」や文化庁の「記録作成等の措置を講ずべき無形の民俗文化財」となっています（写真1）。韓国固城（ごそん）（写真2）や中国雲南省（写真3）などでも同様の祭事が行われており、古来よりの中日韓の深い交流が感じられます。

稻と鳥

Rice cultivation and birds

日本では、稻作を行った痕跡がある各地の遺跡から鳥形木像が出土しており、同様の木像は、中国の長江流域や韓半島の稻作地域に伝わる風習にも用いられることが指摘されています（萩原秀三郎『稻と鳥と太陽の道』）。こうした鳥への信仰は、日本神話における天鳥船や八咫鳥などのように、未開の地への先導役としてもみられます。登呂遺跡（静岡市駿河区）からもそうした木像が出土しており（写真4）、弥生時代における人々の信仰を感じることができます。

神饌 (しんせん)

Shinsen: rice products offering to the gods

日本各地に古くから伝わる神々へのお供えのことを「神饌」と言います。神饌には多くの場合、米や、米で作った酒、餅が用いられ、昔からいかに日本人にとって米が大切な存在であったかが伺い知れます。神道の世界では、お供えしたものを御下がりとしていただく「直会（なおらい）」によって、神と人が一体となると考えられています。神嘗祭（かんなめさい）や新嘗祭（にいなめさい）など神事で奉る初穂はもちろん、一般家庭の神棚にお供えする米や酒、餅などもまた、神饌です。

石上布留の早稻田を秀ですとも絶だに延へよ守りつつ居らむ

久方の雨間も置かず雲隠り鳴きそ行くなる早稻田 雁がね

雲隠り鳴くなる雁の行きて居む秋田の穂立 繁くし思ほゆ

我が耕ける早稻田の穂立 作りたるかづらぞ見つふ思はせ我が背

我妹子が業と作れる秋の田の早稻穂のかづら見れど飽かぬかも

石上布留の早稻田の穂には出です心のうちに恋ふるこのころ

相見らく飽き足らねども稻のめの明けさりにけり舟出せむ妻

娘女らに行相の早稻を刈る時になりにけらしも萩の花咲く

秋田 刈る苦手動くなり白露し置く穂田 なしと告げに来ねらし

さと鹿の妻呼ぶ山の岡辺なる早稻田は刈らじ霜は降るとも

恋ひつとも稻葉 かき別け家居れば乏しくもあらず秋の夕風

住吉の岸を田に墾り蒔きし稻 かくて刈るまで逢はね君かも

太刀の後玉纏田 居につまでか妹を相見す家恋ひ居らむ

秋の田の穂の上に置ける白露の消ねべくも我是思ほゆるかも

秋の田の穂 向きの寄れる片寄りに我れは物思ふれなきものを

桶を守部の里の門田早稻 刈る時過ぎぬ来じとすらしも

秋の穂 をしのに押しなべ置く露の消かもしなまし恋ひつつあらずは

玉桿の道行き疲れ稻席 しまくても君を見むよしもがも

には鳥の葛飾早稻 をにへすともその愛しきを外に立てめやも

上つ毛野佐野田の苗のむら苗に事は定めつ今はいかにせも

稻 つけはかかる我が手を今夜もか殿の若子が取りて嘆かむ

おしていなと稻は雛かねど波の穂のいたぶらしもよ昨夜ひとり寝て

あらえ 田の鹿猪田の稻を倉に上げてあなひねひねし我が恋ふらくは

万葉集にみる米作り

Rice and its cultivation in old poems

天皇から農民まで、様々な身分の人々が詠んだ約4,540首の和歌からなる奈良時代の歌集『万葉集』。そこには、早稻、苗、穂、田など、米にまつわる語を含む歌が少なからず含まれています。稻には収穫時期の違う早稻・中稻・晚稻がありますが、中でも早稻についての和歌が多いのは、実りを待ちにしていた当時の人々の気持ちの表れなのかもしれません。中国最古の詩集『詩経』(紀元前11~7世紀頃)にも、稻刈りなど農業に関する詩が見られます。

第六章 米に見る東アジア文化

Section 6 Rice in East Asian Culture

東海道五十三次にみる米作り

Rice cultivation seen at the ukiyo'e

江戸時代に整備され、江戸と京の間の流通を支えた街道「東海道」。その53の宿場町の人間模様を描いた歌川広重らの浮世絵版画集『東海道五十三次』は、当時流行していたお伊勢参りに触発され作られたとされています。しかしそこには、当時の米作りや餅つきなどの様子も多く描かれています。本来の題材ではないにも関わらず、当たり前のように描き込まれたこれらの風景は、当時の人々の暮らしと米や稲作との距離の近さを示すものなのかもしれません。

▲ 歌川広重の浮世絵にみる米作り

- 1 東海道五拾三次之内『濱松冬枯ノ図』
- 2 東海道五拾三次之内『袋井出茶屋ノ図』
- 3 東海道五拾三次之内『掛川秋葉山遠望』
- 4 東海道五十三次之内『懸川秋葉山別道』(隸書版)
- 5 東海道五拾三次之内『鞠子』
- 6 東海道五十三次之内『府中あへ川遠景』

第六章

米に囲む東アジア文化

Section 6 Rice in East Asian Culture

▲『四季加嶋風俗図』（上）とその白破線枠内の拡大（右） | 富士山かぐや姫ミュージアム所蔵

古絵図にみる米作り

Rice cultivation seen in old illustrations

江戸時代以降に日本各地の神社に奉納された「大絵馬」には、豊作を願って描かれたそれぞれの時代の米作りの様子を見るることができます。一年を通しての農作業の様子をまとめた「四季農耕図」には、種蒔きや田植え、収穫、農作業間の休憩などの当時の様子が描かれています。中国で南宋（1127～1279年）に描かれ始め、その後、韓国や日本の画家にも影響を与えた「耕織図（こうしょくず）」でも、稻作の過程などが精緻に描かれており、当時の様子が伝ってきます。

第六章 米に見る東アジア文化

Section 6 Rice in East Asian Culture

▲ 中国の南宋時代の『樓璫（ろうとう）耕織図』を手本に描かれたと考えられる韓国の朝鮮時代の米つくりの様子 | 韓国中央博物館所蔵

▲ 中国の清時代の米つくりの様子を伝える『清冷枚（せいれいめい）耕織図』 | 台湾故宮博物院所蔵

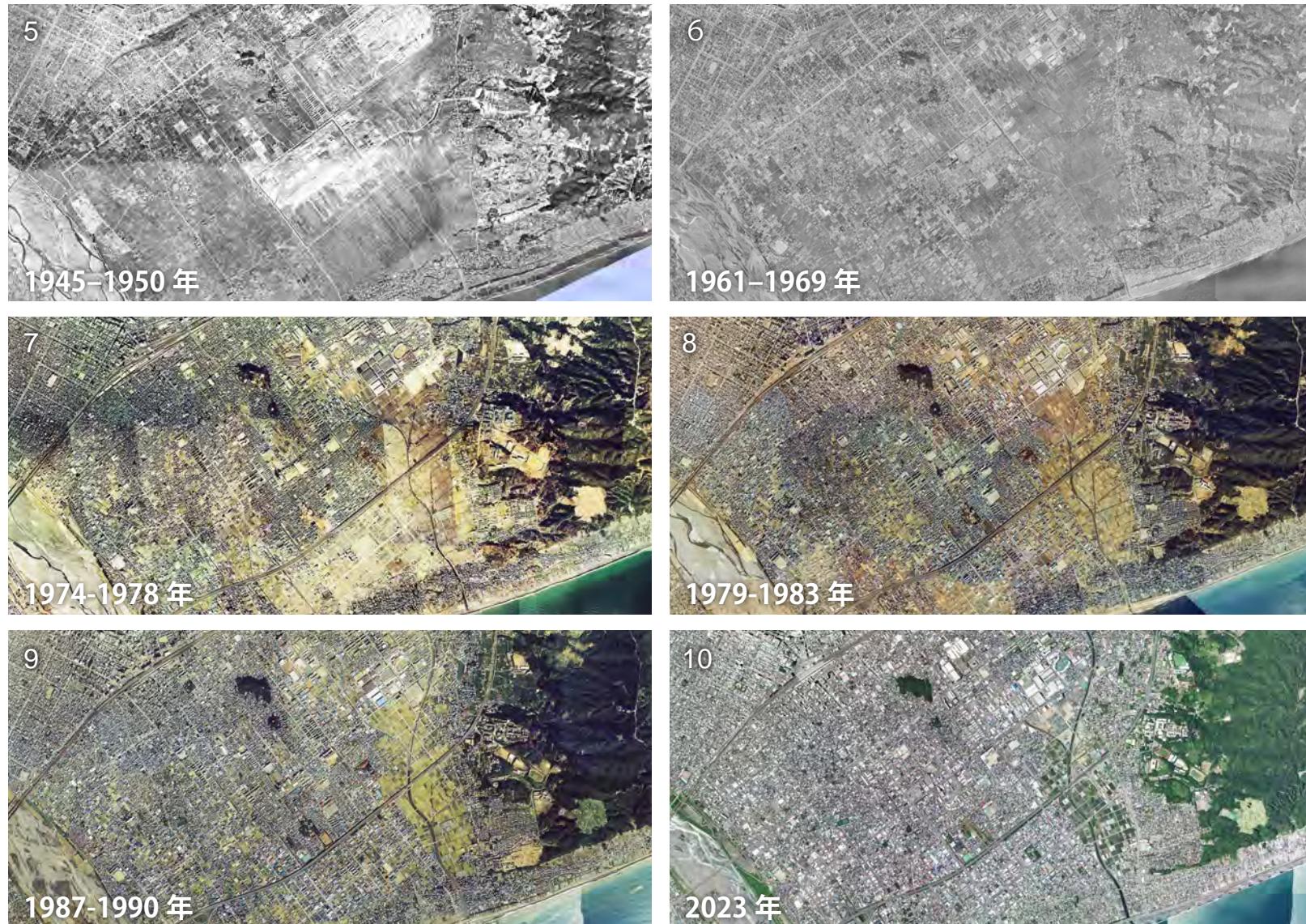
▲ 中国の清時代の米つくりの様子を伝える『佩文斎（はいぶんさい）耕織図』 | 国立国会図書館所蔵

第六章

米に囲む東アジア文化

Section 6 Rice in East Asian Culture

時とともに変わりゆく景観
A landscape changing over time


国土地理院が提供する1894年以降の地図や1945年以降に撮影された空中写真を並べると、当館の位置する静岡市南部でも、かつて広がっていた稻作地帯が急速に工場や住宅地に変わっていく様子をたどることができます。近代農業の導入、

そして近年の私たちの生活スタイルの変化は、身近な自然環境を景観規模で大きく変え続けています。当然、地域の生物多様性に与えた影響も甚大なものでしょう。私たちは今後さらに何を失い、何を残していくのでしょうか。

第六章 米に見る東アジア文化

Section 6 Rice in East Asian Culture

◀▲ 静岡市南部の地図（1～4）と航空写真（5～10）にみる 稲作地帯の変化【谷 謙二「今昔マップ on the web」および国土地理院「地図・空中写真閲覧サービス」より、一部加工（地図1～4の稲作地帯を淡緑色に着色して表示）】

1 1894–1915 年の地形図	3 1972–1982 年の地形図	5 1945–1950 年の航空写真	7 1974–1978 年の航空写真	9 1987–1990 年の航空写真
2 1928–1945 年の地形図	4 1988–2008 年の地形図	6 1961–1969 年の航空写真	8 1979–1983 年の航空写真	10 2023 年の航空写真

撮影 | 小栗 進

▲ 静岡県内の棚田景観 (左と右上) 石部の棚田 (賀茂郡松崎町) (右下) 久留女木の棚田 (浜松市北区引佐町)

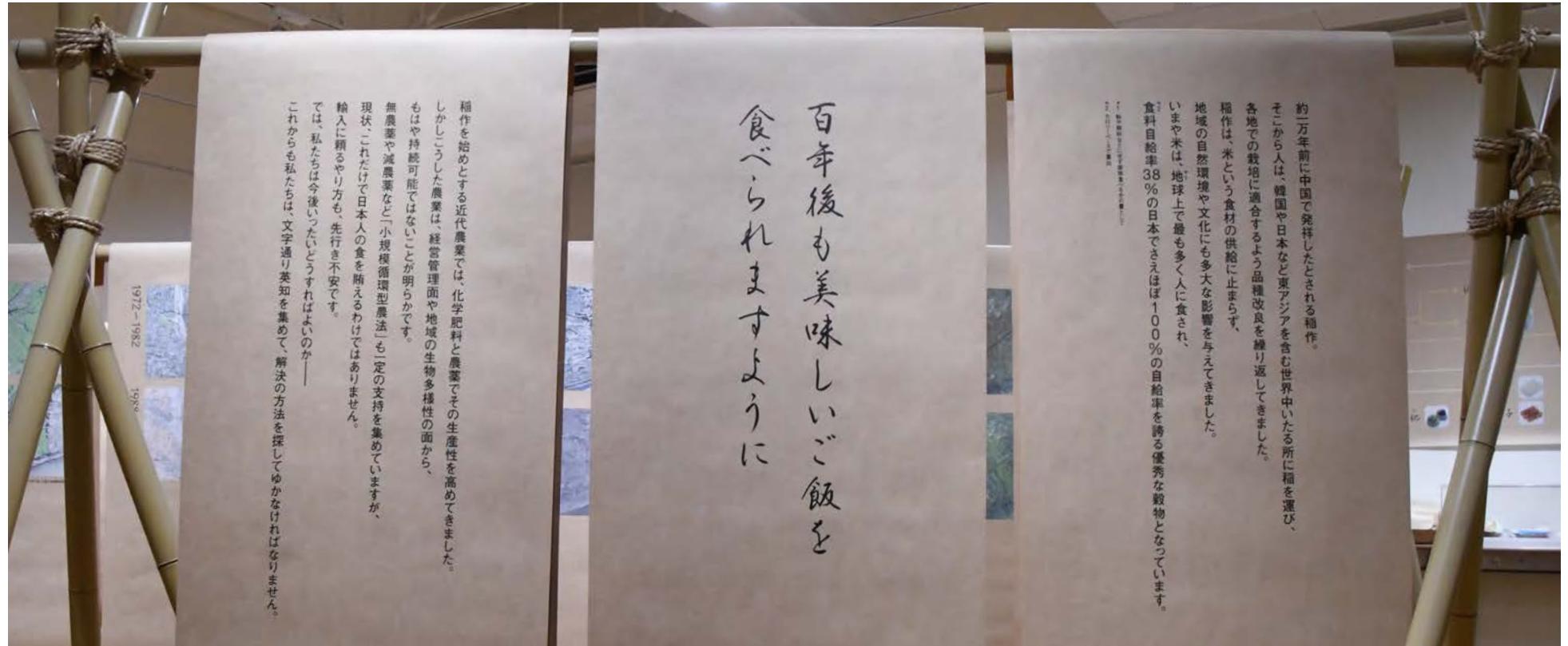
棚田

Rice terraces

山間に広がるテラスのような棚田。急峻な地形を巧みに利用した独特で美しい景観、生物多様性保全への効果などが注目され近年評価が高まっていますが、耕作効率の悪さなどのため、国内ではこの30年間で約1/3が消失したとされています。アジアを中心に広く見られる棚田には、中国雲南省の紅河ハニ棚田など「世界農業遺産」に認定されたもの^{*1}がいくつもあり、静岡県でも「日本の棚田百選」^{*2}掲載の5地区を始めとする多くの棚田が知られています。

*¹ 国際連合食糧農業機関 (FAO) により認定

*² 農林水産省選定 (1999年)



約一万年前に中国で発祥したとされる稻作。そこから人は、韓国や日本など東アジアを含む世界中いたる所に稻を運び、各地での栽培に適合するよう品種改良を繰り返してきました。稻作は、米という食材の供給に止まらず、地域の自然環境や文化にも多大な影響を与えてきました。いまや米は、地球上で最も多く^{*1}人に食され、食料自給率38%^{*2}の日本でさえほぼ100%の自給率を誇る優秀な穀物となっています。

稻作を始めとする近代農業では、化学肥料と農薬でその生産性を高めてきました。しかしこうした農業は、経営管理面や地域の生物多様性の面から、もはや持続可能ではないことが明らかです。無農薬や減農薬など「小規模循環型農法」も一定の支持を集めていますが、現状、これだけで日本人の食を賄えるわけではありません。輸入に頼るやり方も、先行き不安です。

*1 粉や飼料などにせず直接食べる分の量として *2 カロリーベースで算出

では、私たちは今後いったいどうすればよいのか――

これからも私たちは、文字通り英知を集めて、解決の方法を探してゆかなければなりません。

百年後も美味しいご飯を食べられますように。

Texts in English

Page 2

Prologue – learning, knowing, thinking, and deepening “rice”

Rice plant (*Oryza*), rice, and rice fields are all too familiar to the Japanese people. First of all, what is rice as botanical sense? How did wild rice, which natively inhabited in the fields without human intervention, evolved to the cultivated rice plant that produces rice? How has the history of people's activities surrounding rice affected the local nature and culture, and what will happen in the future? In this exhibition, we look back at rice plant, rice, and rice fields from various angles, and remind “What is rice?” from a perspective unique to our museum, Museum of Natural and Environmental History, Shizuoka.

Page 3

Rice as a crop, rice in botany

Rice is one of the world's three major grains, along with wheat and corn. The world's rice production amounts to 755.47 million tons (based on milled rice in 2021), and in terms of the amount that goes directly into people's mouths, rice is the most consumed grain in the world. Rice plant, which produces rice, is cultivated mainly in Asia, where the climate is warm and rainy. Over the thousands of years of cultivation history, rice varieties have been selected around the world to suit the environment, climate, and tastes, resulting in a wide variety of rice forms, cultivation methods, and cooking methods. Here, we look back “What is rice?” in the botanical sense, as well as the variety of the cultivated rice plant and rice.

Evolutionary history of rice

A plant family Poaceae, which includes rice plant, belongs to the monocotyledones, which has a single leaf when it first germinates from the seed. The other families close to the Poaceae contain, *e.g.*, pineapples, cyperus, and rushes. Genus *Oryza* comprises 23 known species/subspecies of rice plant, of which only two species, *Oryza sativa* originated from Asia and *Oryza glaberrima* in Africa, have been cultivated. The latest rice DNA research revealed that “*japonica*” and “*indica*” types, which have been once recognized as subgroups of *Oryza sativa*, actually evolved from different species.

Page 4

Specimens of rice plant of *Oryza*

Twenty-three species/subspecies of rice plant of the genus *Oryza* are known in the world. Of these, dried specimens of 17 species are shown here. Which ones are species providing rice that we eat?

Page 5

Morphological characteristics of rice plant

Comparing specimens of various species of the genus *Oryza*, it can be seen that the basic structure of leaves and flowers is the same.

The stem is cylindrical and hollow inside. It makes that the flexible and light like a stem of bamboo, allowing to be able to grow rapidly. The flowers are wind-pollinated, meaning that the pollen is blown away by the wind. Since there is no need to be carried pollen by insect, the petals are degenerated and inconspicuous. The floret has lemma (protective glume) and palea (inner glume) on the outside and inside, respectively, which later becomes rice hull and protects the seed (brown rice).

A stainless steel sculpture, “Germination of wild rice”

TANABE, Mitsuaki 2002
Hiyoshinomori Garden Art Museum, Yokohama

This is a stainless steel sculpture with a wild rice motif. Wild rice populations are declining all over the world. The artist, Mitsuaki Tanabe, realized the importance of conservation of wild rice, and has been working to preserve the natural habitat of wild rice through his sculptures. The sculpture “Germination of Wild Rice” is one of his works with such a message, and depicts a wild rice plant germinating, with its large, curved roots about to pierce the ground. The long, stick-shaped part is the awn. This is a common feature in wild rice, but many of the rice we eat today have short and vestigial awns due to years of selective breeding. This work was exhibited at the Japan-Romania Cultural Exchange Exhibition 2002 and received the Brancusi Encouragement Award.

Page 6

Recommended varieties of paddy rice in Shizuoka Prefecture

“Recommended varieties” are prefecture-determined excellent ones of crops, which are recommended to disseminating in each prefecture. In Shizuoka Prefecture, as well as the Japanese major “Koshi-hikari,” many recommended varieties, which is congenial to grow in this region, are cultivated in Shizuoka Prefecture, such as: “Milky Queen,” a stickier version of Koshi-hikari; “Nikomaru,” resistant to high temperature in summer; and some sake rice varieties, *e.g.*, “Homare-fuji” and “Reiwa Homare-fuji.” Morphological and ecological aspects, including height of plant body, length of ear, size of paddy, and harvest time, are vary depending on the variety. Here, recommended varieties of paddy rice, experimentally cultivated this year at the Shizuoka Prefectural Research Institute of Agriculture and Forestry, are shown.

Native varieties of unhusked rice

Recently, research institutions at the national or prefectural level have usually been responsible for improving rice varieties, but until the beginning of the 20th century, this work was carried out under the initiative of the private sector. From the Edo period to the mid-Showa period, it was said that a single farmer had multiple varieties, and that there was huge number of varieties. Such varieties, still exist in small numbers in particular region, are called “native varieties.” In these varieties, the height of the plant body and the shape of the unhusked rice are diversified, and some have characteristics different from current varieties, such as varieties with a long whisker-like awn (“nogi”) developing on the hull.

Page 7

Clues to explore history

Wild rice that lived in the fields became cultivated rice plant producing rice in China, and after that the rice cultivate culture was introduced to Japan across the ocean. In the Yayoi period, along with the paddy rice cultivation spread, rice farming became a central matter for people's lives; subsequently the rice supported people's social lives as “currency,” sometimes became a source of war, and remains an indispensable part of our diet even today. Recently the history of Japanese rice cultivation was revealed by tracing the “fossils” of rice. Here, we look back the history since the time over 3000 years ago.

Exploring the existence of rice

The carbonized rice found in the ruins provides conclusive evidence to find out whether the Japanese people were eating rice at then. On the other hand, plant body such as uncarbonized seeds and leaves is easily decomposed, so they rarely remain as fossils. Exceptions include are the plant silicates contained in leaf cells and the pollen. Both are made of strong materials, and may be stored for a long time.

Exploring evidence for rice-eating habit

Charred marks on carbonized rice and earthenware have been found at Yayoi period ruins across Japan. Carbonized rice includes rice hulls that have become hardened and carbonized in the soil, and rice that has been charred by cooking; it is found singly as a rice grain or aggregation of grains like a block. In Shizuoka Prefecture, trace of old rice paddies and carbonized rice of the late Yayoi period (100–300 AD) have been found at, *e.g.*, Toro ruins (Suruga Ward of Shizuoka City), Nagasaki ruins (Shimizu Ward of Shizuoka City), Kadoue ruins (Nishi Ward of Hamamatsu City).

Exploring varieties of rice

The rice grown in Japan is mainly Japanese rice (*japonica*), but it can be further divided into “tropical *japonica*” and “temperate *japonica*” based on appearance and genetic characteristics. Analysis of the DNA of rice obtained from the ruins reveals that, during the period from the Yayoi period to the Middle Ages of Japan, cultivated rice in Shizuoka Prefecture was a mix of tropical and temperate *japonica*. Note that tropical *japonica* is a group of varieties that are adapted to tropical slash-and-burn farming areas.

Exploring the beginnings of rice cultivation

Although it is said that paddy rice cultivation was introduced during the Yayoi period in Japan, is it possible that rice cultivation was practiced before that? So far, no “rice fossils” such as carbonized rice, pollen, or silicic acid bodies that can be definitely identified as rice have been found in soil from the Jomon period. On the other hand, traces of rice, millet, and legumes have been discovered in pottery from the late Jomon period, and some researchers believe that the Jomon people, who have been thought to be hunter-gatherers, were also cultivating crops. Rice can be grown without paddy fields in, *e.g.*, the slash-and-burn farming areas of Southeast Asia, so it is no wonder that there were Jomon people who

cultivated rice by sowing seeds. Towards our better understanding about the history of rice cultivation in Japan, rice cultivation around the world is shown in the next section.

Page 8

Rice cultivation, skillfully fitting local, natural environment

Rice cultivation, which is said to have originated in the Yangtze River basin of the country, can now be seen all over the world, mainly in the tropical and temperate regions of Asia. Many people may think water-filled rice fields (paddy fields) for rice cultivation, but that is not the only environment to grow rice. Various varieties of rice plant have been created depending on various environments around the world. Great diversity of the rice and its cultivation are the result of the history of human activities living in various environments around the world.

Diversity of rice cultivation in the world

In the mountainous regions of Asia where water is difficult to obtain, rice called “upland rice” is grown by a traditional slash-and-burn farming method. In contrast, in tropical low-lying wetlands that become floodplains during the rainy season, a variety of rice plant called “floating rice,” attaining several meters in length as the water level rises, grows. In addition, rice cultivation using large machinery on large farms is seen in, *e.g.*, Europe and Americas. The rice cultivation, which skillfully takes advantage of the local environment, is practiced all over the world.

Page 9

Diversity of rice grains and ears in the world

Rice grains vary from long and thin to round. Many people may feel that two major groups of Asian rice, *japonica* and *indica*, are different in shape. The rice also has a variety of stickiness and aroma, and various cooking methods, suit the characteristics of the local rice, have been known all over the world. Here, a part of variety of rice grains and ears of rice plant from around the world is shown. Can you see the difference in color and shape between them?

Paddy rice

Paddy rice is a kind of rice plant grown in paddy fields filled with water. It is cultivated using a method that matches the inherent characteristics of rice plant, which is a semi-aquatic (emerging) plant. The soil in the paddy field has fine particles and is clayey, so it is best described as sticky or squelchy. This unique soil structure is maintained through the repeated farming process of filling the soil with water in the spring, draining it in early summer, adding water just before the ears emerge, draining the water again before harvesting, and plowing in late fall.

Upland rice

Rice grown in upland field is called “upland rice.” It is cultivated in many parts of inland Asia, especially in mountainous areas, because it has the advantage that can be cultivated even in areas,

where water is difficult to obtain, and that can be sown directly, *i.e.*, puddling or seedling transplanting are not necessary. However, its yield and taste are rather lesser than that of rice grown in paddy fields, and thus, for example, upland rice products occupy only a few percent of the total rice products in Japan. The soil in areas where upland rice is cultivated is not only clayey as in rice paddies, but also sandy soil derived from volcanic ejecta.

Floating rice

Floating rice is a special type of rice found in Southeast Asia, South Asia, Africa, and South America, and is cultivated in low-lying wetlands where heavy flooding occurs during the rainy season, with water reaching depths of several meters. Even in such places, the leaves remain above the water, allowing the stems to grow longer and longer as the water level rises. When the water level rises, it grows by 20 to 25 cm in a day, and large ones are said to reach over 10 meters in length. When the water level drops, the leaves and stems that were floating on the water surface fall down, and the rice that grows on the ears of rice can be harvested.

Page 10

Historical changes of ecosystem in the rice fields

Environment of rice fields and the creatures living there have changed greatly in Japan over the past 3000 years. Initially, it was an environment inhabited by a variety of creatures, but, during the Edo period, when the rice productivity and stricter management were drastically improved, all living creatures other than rice were kept away and treated as "uninvited." While some creatures have a small impact on rice cultivation, the others appear as weeds, pests, and pathogens that cause farmers to suffer. Historical changes of the relationships between humans and the other creatures in rice fields are followed here.

Rice fields as the origin of Japanese cuisine

Rice fields and the surrounding waters were originally inhabited by many creatures such as fish, frogs, shellfish, and insects, and larger birds and animals also visited for predating of them. In other words, rice fields were a place for producing not only rice but also animal protein. The origin of sushi, a representative Japanese dish, was born from this encounter between fish and rice. Among the insects found in rice fields, locusts and rice grasshoppers were commonly eaten by Japanese people. Eating insects is a hot topic these days, but we have been eating insects since ancient times.

Page 11

Decline of species diversity

Many of the creatures living in rice fields were once common, and could be found everywhere. Especially since the mid-twentieth century, when modern agriculture way was introduced, many creatures have decreased or disappeared due to changes in the environment by farmland development, the effects of pesticides and herbicides, the loss of reservoirs and thickets from the surrounding satoyama environment, and the effects of predation by non-native species. Some of fish and aquatic insects once seen in the rice fields

are now considered endangered species, and at least two species of diving beetle, *viz.*, *Cybister chinensis* and *Hydaticus satoi*, appear to be already extinct from Shizuoka Prefecture.

Invaders in rice fields

Invasive species that have introduced into Japan in modern times are also commonly seen in rice fields. The American crayfish, listed as a specified alien species recently in Japan, was introduced from North America in the 1920s, the rice weevil, a rice pest, was introduced from North America in the 1970s, and the golden apple snail was introduced from Taiwan in the 1980s. These alien species are still thriving and expanding their influence, in contrast to the decline of native species. Prehistoric naturalized plants that came along with the introduction of rice can also be seen in rice fields and their surrounding areas.

Influence of pesticides

"Akatonbo" is the common name for dragonflies of the genus *Sympetrum*, and seven species, including Aki-akane (*Sympetrum frequens*), breed in rice fields in Japan. The population size of Akatonbo, which represents feature of autumn, has decreased dramatically across Japan in recent years. First, around 1970, the modernization of irrigation systems led to a decline in the number of Miyama-akane (*Sympetrum pedemontanum elatum*). In the 1990s, the number of Noshime-tonbo (*Sympetrum infuscatum*) and Aki-akane began to decline, and it is thought to be related to the spread of neonicotinoid pesticides. Currently, habitation of various species of Akatonbo is in a critical situation throughout Japan.

Weeds, pests, and pathogens

Three major uninvited things for rice cultivation are weeds, insect pests, and pathogens. Weeds grow more vigorously than rice, and weeding has used to be the most labor-intensive task in rice cultivation. Insect pests such as planthoppers and pathogens such as rice blast were so terrifying that, in severe cases, they could wipe out the harvest of many villages. The history of rice cultivation is, in other words, the history of struggle against them. What's more, they are truly troublesome beings, because, the more we try to eliminate them, they become more vicious.

Regional extinction of a frog subspecies

A frog *Pelophylax porosus brevipodus* is endemic subspecies to western Japan. Although it originally inhabited in wetlands, after humans started growing rice, rice paddies became its new habitat. Such creatures are called "agriculture-dependent species." The eastern limit of distribution of this subspecies is at Shizuoka Prefecture. It was also seen in the central part of the prefecture until the 1980s, but it rapidly declined after that due to the re-zoning of rice fields, abandonment of cultivation, and pesticides, and its distribution area has narrowed by about 90 km in these 40 years. The day may soon come when this adorable frog will no longer be seen in Shizuoka.

Rice fields, attacked by increased beasts

Another "uninvited" threat to agriculture, including rice cultivation,

is large mammals such as deer, wild boars, and bears. If they harm crops, they are considered to be pests. Its damage, seems to have been occurring since the Nara period, does not only cause economic losses, but also causes serious damage by reducing farmers' motivation to work. It can also happen a direct threat to people working in agriculture. In recent years also, animal damage frequently occurred, and countermeasures are being taken such as surrounding rice fields with electric fences.

Page 12

What will be rice fields changed — the city or the forest?

The area of rice fields is decreasing year by year in Japan. The main causes of decline are conversion to residential land and abandonment of cultivation. After rice fields are abandoned, fallow fields may be temporarily modified into wetlands with rich biodiversity, but after that they dry up and change from grasslands to forests. Through this process, the creatures that originally inhabited in rice fields, preferring wetlands and floodplains, disappear. Loss of the richness of ecosystems and biodiversity is not only caused in the case when the land is leveled with concrete.

Selective breeding against global warming

In recent years, the lowering in rice quality due to rising temperatures has become a problem. The grains of the "non-glutinous rice" we usually eat are a transparent, milky white color, but if the grains are exposed to high temperatures during the ear growth period, they will suffer from poor growth and become cloudy and look unsightly. Koshi-hikari, Japan's representative rice variety, is sensitive to high temperatures, and as temperatures have risen in recent years, production has been decreasing year by year. In order to prevent that we will be not able to eat delicious rice due to the progress of global warming, efforts are being made to improve varieties of "high-temperature tolerant" rice.

Smart agriculture

"Smart agriculture," which utilizes cutting-edge technologies such as robots, AI, and IoT, has recently begun to be used in rice cultivation. This is expected to improve the efficiency of agricultural work, pass on technology, increase yields, avoid increases in production costs and environmental impact, and even resolve the serious issue of the decline in the number of agricultural workers. In the near future, rice farming may become a reality without the trouble in rice planting and harvesting using robotic agricultural machinery, growth management using drone aerial images, and water quality and quantity adjustment using water management systems.

Page 13

Sustainability in future of rice cultivation

Since the beginning of organized paddy rice cultivation in Japan, paddy fields have been repeatedly excavated and destroyed by, *e.g.*, floods and volcanic ash fall. In the geological cross section exhibited here, you can see the history of agriculture having been adjusted to nature transition, where paddy fields and non-cultivated

wetlands were alternatively overlain several times from the Heian period to modern times on that of Nara period. On the other hand, in Europe modern rationalism, which incorporates the results of natural science, was born, an idea that explored and controlled the laws of nature. This idea was introduced in Japan after the Meiji period, and, as a result of the spread of industrial rice paddy cultivation, many of paddy ecosystems in Japan have now lost their diversity, and the sustainability of paddy rice cultivation itself is also being lost.

Brief notes on a surface peat specimen of strata in middle Shizuoka (Agetsuchi), showing traces of rice cultivation

1 Middle Kofun period. It is estimated that rice cultivation was already practiced in this area in the middle of the Yayoi period. However, at the bottom of this material, around the middle of the Kofun period, it was covered thickly with a layer of natural sediment, and no trace of rice cultivation could be seen.

2 Late Kofun period to Nara period. Many scattered white clay particles, thrown up during plowing, can be seen in the cultivated paddy soil (slightly dark layer), indicating active rice cultivation at then. The layer of "Jori-type paddy fields" created by land readjustment projects during the Nara period can also be seen in the upper part.

3 Heian period. There is a peat layer (darker colored layer) formed by wetland developing as a result of the rise in groundwater levels, and there is no evidence of rice cultivation. Among the layers from this period, a layer of volcanic ash from the Ko'zu-shima Island's eruption in 838 can also be seen.

4 Middle Ages (Kamakura period). In the Middle Ages, layers of paddy field soil appear again. You can see how the ridge between rice fields, being neglected and not used for about 400 years after Nara period, was restored/reused at the same area, when the land was dried by groundwater level falling.

5 Early modern to modern times. A peat layer re-appears on top of the medieval paddy cultivation soil, superposed by a layer of natural sedimentation caused by floods. It reveals that rice cultivation in this area has been discontinued once again. After that the paddy fields were re-developed in the early modern period in the same place, and the rice cultivation continued into modern times at there.

6 Future. This material teaches us that people living here have lived in harmony/adjusting with nature and eaten rice since ancient times. Can we continue to have such an "ordinal" life in the future?

Page 14

Rice in East Asian culture

When walking around through the rice-farming areas of South Korea or southern China, you may feel like you are somewhere in Japan. It is probably not only because the food culture but also the scenery is similar. There are strong similarities between Japan, China, and Korea in the culture of rice cultivation and eating, both as a material for art and as an object of rituals and rituals. When you come into contact with these cultures, you can feel the long history of interaction between people in East Asia. In this chapter, we

overview about rice, which has had a great influence on East Asian culture, with the perspective of “food” and “lifestyle.”

Rice as food

Rice has a variety of uses as a food ingredient. For Japanese people, rice is an indispensable staple food, and, since ancient times, it has also been used as a favorite item such as alcoholic beverages and sweets, as a seasoning, and even as an ingredient for creating new foods. In other words, rice is like a principal role that supports our diet, a supporting role, and also a background role that does a excellent job. Here, a figure of rice is overviewed as a food ingredient particularly in East Asian countries, *i.e.*, China, where the birth place of rice cultivation, Korea, and Japan.

Rice production in East Asia

Rice is the most common grain directly eaten (not as powdered) by people on earth. The world's rice production is just under 800 million tons in 2021; of these, the highest production is occupied by the Asian countries (15 of the top 20 countries, 88.6% of total production), including mainland China with the world's largest production (212.84 million tons, 27.0%), Japan (the 12th place, 10.52 million tons, 1.3%), and South Korea (the 16th place, 5.21 million tons, 0.6%). Since rice prefers a warm climate, it was difficult to produce it in cold regions. However, Hokkaido and other northern regions have also now become one of Japan's leading rice producing regions, thanks to improved varieties that are resistant to cold and can be harvested earlier.

Page 15

Why has rice become so special among grains?

Rice is one of the world's three major grains. Among various grains, rice is highly productive, and hundreds of grains of rice can be harvested from a single seed in less than half of a year. Its ecological characteristics, which require a lot of water for growth and prefer a warm climate, make it suitable for the environments of various parts of Asia, including southwest Japan. On the other hand, paddy rice cultivation requires a lot of labor, and its success or failure is directly affected by the yearly condition of natural environment. The reason why rice may have come to have a special existence since, working the cultivation tasks, a sense of community and a sense of reverence for nature gradually developed among people.

Page 16

Lineage of rice cuisine

A famous proverb, “There are seven gods in a single grain of rice” is in Japan. Since ancient times, Japanese people have cherished and thoroughly used rice in various forms. Straw and threshed rice husks are used as fertilizer, livestock feed, and bedding, and the rice bran and white rice that are separated through milling are transformed into a variety of foods. White rice is chiefly cooked and eaten as is, but it is also sometimes ground into powder, sometimes fermented, and sometimes used as an ingredient to create other foods, being enriching our dining tables and gatherings.

Page 17

White rice

Speaking of rice, the first thing that comes to mind is cooked white rice. This is the simplest yet most common cooking method. Most of the rice grown in Japan and Korea is Japonica rice (*japonica*), and in China, a variety of rice varieties such as Japonica rice and Indica rice (*indica*) are eaten. Indica rice doesn't get a good reputation in Japan as being “hard and dry,” but that depends on how it's cooked. In Thailand and other countries, rice is boiled in a large amount of water like boiled noodles, and the texture is different from Japonica rice. Indica rice also has glutinous varieties, which cannot be called “dry” in general.

A little modified white rice cuisine

A variety of menus made with slightly modified white rice are available in many countries in Asia. Cuisines such as the Japanese soul food “onigiri” (a variety of rice balls, including “shio-musubi,” the best one just by seasoning them with a little salt), the Chinese fried rice “Chǎofàn,” and the Korean “bibimbap” are all simple but make you feel the cooking style of each country. There are many other rice-derived, familiar foods in this region; examples include porridge as a staple breakfast in various parts of Asia, a variety of cuisine made by steamed glutinous rice (*e.g.*, *sekihan*, *okowa*, and *chimaki* in Japanese), and rice cake.

Rice flour products, *e.g.*, noodles

Rice noodles are not rather common in Japan. In southern China, it is called “mǐfěn” (pronounced “bí-hún” in Fujian province and Taiwan) and is considered to be one of the staple foods. Even in neighboring Vietnam, a variety of rice noodles, having different cross-sectional shapes, thicknesses, and textures, is known such as Phở, Bún, and Hủ tiu. Rice noodles are attracting attention because they are gluten-free, but the culture of using rice as flour has developed in Asia and Africa, and is not seen in Europe and America, where foods made by wheat flour is staple.

Rice as seasoning

There are many seasonings made from rice products, *e.g.*, rice wine and rice malt, and rice itself. “Mirin” (a type of sweet rice wine) is made by glutinous rice adding rice malt and alcohol and, for creating a sweet taste, aging it to break down the starch. Acetic fermented sake becomes rice vinegar. Production quantity of rice miso (such as “Shiro-miso”), which is made by fermenting soybeans with rice malt, far exceeds that of barley miso or soybean miso (such as “Hatcho-miso”). Although they are all standard seasonings for Japanese cuisine, they are said to have originally been introduced from China (there is also a view that mirin originated in Japan), and later diversified independently in Japan.

Sweets made by rice

Pounded glutinous rice becomes rice cake (“mochi”), kneaded non-glutinous rice flour becomes dumpling (“dango”), and kneaded glutinous rice flower (“shiratama-ko”) with sugar and starch syrup becomes “gyuhi.” It's curious because once rice is turned into a

paste such like these, it quickly becomes an indispensable foods in sweets shops. As well as Japanese sweets using *gyuhi* such as “Habutae-mochi,” “Nama-yatsuhashi,” and a newcomer “Fruit Daifuku,” various sweets are also known made by mochi/dango combined with sweetly cooked red beans, such as “Oshiruko,” “Kushi-dango,” and “Daihuku.” Traditional baked sweets such as “Senbei,” “Okaki,” and “Arare” will also give you a taste of Japan.

Rice as beverages

In Asian countries, a pronounced rice-producing region, there are many alcoholic beverages made by alcoholic fermentation of rice, such as “Japanese sake” (rice wine), “Makgeolli” (an unrefined sake from the Korean Peninsula), and “Shaoxing wine” (a rice wine originated in Shaoxing, Zhejiang Province, China). And, distilled spirits, *e.g.*, “Kome-sho’chu” (a rice white liquor in Japan) and “Awamori” (a kind of spirit in Ryukyus), are also well-known in this region. Rice wine is also essential as for a sacred sake, offering to the gods. Traditional sweet rice drinks that are not fermented with alcohol are also known in various places, such as “Amazake” (found in Japan), “miki” (Ryukyus), “shikke” (Korea), and “Jiuniāng” (China).

Rice as a material creating new foods

Creating unique foods by combining rice with other ingredients has been practiced in Asia countries for a long time. In Japan, “Narezushi” (said to be origin of Sushi), typified by “Funa-zushi” that is a specialty of Shiga Prefecture, is made by marinating fish in salt and rice and fermenting it with lactic acid for, in some cases, few years. “Nuka-zuke” (rice bran pickles) is made by pickling vegetables in a rice bran bed made by combining rice bran and salt water and fermenting with lactic acid; “Natto” (fermented soybeans) is made by wrapping boiled beans in bundles of straw and fermenting them with natto bacteria attached to the straw. These are traditional techniques that makes you feel the long and deep relationship between rice and people.

Page 18

Rice and our lives

Since ancient times, rice and rice cultivation have been written in poems, painted in historical illustrations, and played an important role in the creation myths in Japan. Rituals to pray to the gods and ancestors for a bountiful harvest and to give thanks for the fruit have been passed down throughout East Asia, and the similarities in Japan, Korea, and China reflect the history of cultural exchange. Rice cultivation, which changes over time, modifies also the landscape, and the beautiful and unique rice cultivation landscapes that remain in various places are sometimes attracting attention as local tourism resources. The places where rice comes to life are not just at the dining table or at banquets.

Rice in the creation myth

“Kojiki,” the oldest existing traditional book in Japan, records that rice, silkworms, millet, adzuki beans, wheat, and soybeans were born after Ogitohime's death, and similar stories are told in the other old book “Nihon-shoki.” Rice must have been recognized as

an important grain in Japan from the time of its creation. On the other hand, in the mythology of the Korean Peninsula, there is an anecdote that when Jumong, the founder of Goguryeo, received grain from his mother at the time he founded the country, he forgot to bring wheat only. It seems to reflect the fact that wheat was once a more important crop than rice on the Korean Peninsula.

Page 19

Rice planting festival

“Otaue-matsuri” (rice planting festival) is a ritual that has been passed down at temples and shrines throughout Japan since ancient times. Prior to rice planting, rice seedlings are planted in “Shinden” (holy paddy fields) in order to pray for bumper harvest that year. At Oguni Shrine in Mori Town (Shuchi District, Shizuoka Prefecture), the rice planting festival called “Oguni Shrine Taisoboi” has been held for over 340 years, and has been designated as an “Intangible Folk Cultural Property” and “Intangible Folk Cultural Property should be recorded” by Shizuoka Prefecture and the Agency for Cultural Affairs, respectively. Similar festivals are held in South Korea and Yunnan Province in China, representing the deep relationships between Japan, China and South Korea since ancient times.

Rice cultivation and birds

According to Hidesaburo Hagiwara's “The Rice Plants, Birds, and Path of the Sun,” bird-shaped wooden statues have been unearthed from ruins with traces of rice cultivation in various places in Japan; and, similar wooden statues are noted to be also used in the customs of the rice-cultivation areas in the Yangtze River basin in China and the Korean Peninsula. The belief in birds can also be seen as guides to unexplored lands, similar to the Tencho-fune and Yata-garasu in Japanese mythology. Such wooden statues have also been excavated from the Toro Ruins (Suruga Ward, Shizuoka City), and we can feel the beliefs of people in the Yayoi period.

Shinsen: rice products offering to the gods

“Shinsen” is the items offerings to the gods that have been passed down throughout Japan since ancient times. Rice, sake (rice wine), and rice cake are often used in shinsen, which shows how important rice has been to the Japanese people. In the Shintoism, it is believed that the gods and people can become one through an event “Naorai,” in which the foods offering to the gods are taken after that. In addition to the first ear of rice of the season offered at Shinto rituals such as the Kanname-sai and Niiname-sai festivals, rice, sake, and rice cakes offered at “Kamidana” (a household Shinto altar) are also considered as shinsen.

Page 20

Rice and its cultivation in old poems

“Man’yo-shu” is a collection of “waka” (the Japanese poems) from the Nara period that consists of approximately 4,540 waka composed by people of various social statuses, from emperors to farmers. It includes many poems with the words related to rice, such as early rice, seedling, panicle, and rice field. There are early,

middle, and late rice varieties that are harvested at different times, and the fact that there are many waka about early rice may be an expression of the feelings of people at the time, who looked forward to the harvest. Poems about agriculture, such as rice harvesting, can be also found in China's oldest collection of poems "Shijing" (ca. 11th to 7th century BC).

Page 21

Rice cultivation seen at the ukiyo'e

"Tokaido" was a highway that was constructed during the Edo period and supported transportation between Edo and Kyoto in Japan. The 53 stations of the Tokaido Road, a collection of ukiyo'e prints made by Hiroshige Utagawa and others showing the human patterns of those 53 post towns, is said to have been inspired by the Ise pilgrimage that was popular at the time. However, there are many drawings of rice cultivation and rice-cake pounding at the time. Despite not being the original subject matter, these landscapes, which are drawn in such a natural way, may suggest the closeness between the lives of people at the time and rice and rice cultivation.

Page 22

Rice cultivation seen in old illustrations

On the special large "ema" (a votive tablet) dedicated to shrines throughout Japan since the Edo period, you may be able to see scenes of rice cultivation in each era, with drawings of them praying for a good harvest. The Illustrations of Agricultural Works by Four Seasons, which summarizes agricultural work throughout the year, draws the sowing, planting, harvesting, and breaks in the works. The process of rice cultivation is also drawn in detail in the Cultivation Weaving Illustrations, which began to be painted in China during the Southern Song Dynasty (1127-1279) and later influenced painters in Korea and Japan.

Page 24

A landscape changing over time

Based on maps compiled since 1894 and aerial photographs taken since 1945, both of which are provided by the Geospatial Information Authority of Japan, you can follow the progress that even in the southern part of Shizuoka City, where our museum is located, a rice-cultivation area has rapidly turned into factories and residential areas. The introduction of modern agriculture and changes in our lifestyles in recent years continue to provide drastic change to the natural environment around us on a landscape scale. Naturally, the

impact on local biodiversity has also been enormous. What more will we lose, and what will we leave behind?

Page 25

Rice terraces

Rice terraces look like terrace decks spread out between the mountains. The unique and beautiful landscape that skillfully utilizes the steep topography and its effects on biodiversity conservation have been attracting attention in recent years, and have been receiving increasing praise in recent years. It is, however, estimated that approximately one-third of them has disappeared in Japan over the past 30 years, due to poor cultivation efficiency. Among the rice terraces that can be found widely throughout Asia, there are many that have been certified as FAO's "Global Agricultural Heritage Sites," such as the Red River Hani Rice Terraces in Yunnan Province, China. There are many rice terraces also in Shizuoka Prefecture, including five areas listed in "Top 100 Rice Terraces in Japan" selected by the Ministry of Agriculture, Forestry and Fisheries (1999).

Page 26

Epilogue

Rice cultivation is said to have originated in China about ten thousands years ago. Since then, people transported rice all over the world, including other parts of East Asia such as Korea and Japan, and repeatedly improved varieties to make it suitable for cultivation in each region. Rice cultivation does not only provides rice as a food ingredient, but also has a great impact on the local natural environment and culture. Rice is now the most commonly produced one as the directly eaten grains on earth, and, even in Japan, which has a food self-sufficiency rate of 38%, it has become an excellent grain that boasts a self-sufficiency rate of almost 100%.

In modern agriculture, including recent major rice cultivation, productivity has been increased using chemical fertilizers and pesticides. However, it is no doubt that this type of agriculture is no longer sustainable from a management and local biodiversity perspective. Small-scale recycling farming methods, such as pesticide-free or reduced pesticide farming, are gaining some support, but at present they are not enough to provide food for the Japanese people. The future of supplying crops, relying on imports, is also uncertain.

So, what should we do from now on? We must literally gather our wisdom and search for solutions, towards we can keep on enjoying delicious rice during next 100 years.

主要参考文献

※著者名のアルファベット順 (同一著者の場合は年代順)

地域環境資源センター・多紀 保彦・自然環境研究センター・農山漁村文化協会 (2020) 田んぼの生きもの識別図鑑 2020 年改訂版. 地域環境資源センター, 東京.

Geering, A. D. W., F. Maumus, D. Copetti, N. Choisne, D. J. Zwicky, M. Zytnicki, A. R. McTaggart, S. Scalabrin, S. Vezzulli, R. A. Wing, H. Quesneville, and P.-Y. Teycheney (2014) Endogenous florendoviruses are major components of plant genomes and hallmarks of virus evolution. *Nature Communications*, 5 (5269). <https://doi.org/10.1038/ncomms6269>.

萩原 秀三郎 (1996) 稲と鳥と太陽の道: 日本文化の原点を追う. 大修館書店, 東京.

飯田市美術博物館 (2006) 百姓仕事がつくるフィールドガイド 田んぼの生き物. 築地書館, 東京.

Judd, W. S., C. S. Campbell, E. A. Kellogg, P. F. Stevens, and M. J. Donoghue (2015) *Plant Systematics: A Phylogenetic Approach*. Fourth Edition. Sinauer Associates, Inc., Massachusetts.

クリスチャン ダニエルス (2012) アジアの自然と文化 (1) 米から見る東アジア. 小峰書店, 東京.

甲斐 信枝・佐藤 洋一郎 (2015) 稲と日本人. 福音館書店, 東京.

桐谷 圭治 (2009) 田んぼの生きもの全種リスト. NPO 法人 農と自然の研究所, 福岡.

メダカ里親の会 (2004) 田んぼのまわりの生きもの【栃木県版】. 下野新聞社, 宇都宮.

大塚 泰介・嶺田 拓也 (2020) なぜ田んぼには多様な生き物がすむのか. 京都大学学術出版会, 京都.

佐賀県農林水産部農山漁村課 (2020) さが 田んぼの生き物 識別図鑑 2020. 佐賀県農林水産部農山漁村課, 佐賀.

佐藤 洋一郎 (1999) 森と田んぼの危機 植物遺伝学の視点から. 朝日新聞社, 東京.

佐藤 洋一郎 (2002) 稲の日本史. KADOKAWA, 東京.

佐藤 洋一郎 (2008) イネの歴史. 京都大学学術出版会, 京都.

佐藤 洋一郎 (2010) コシヒカリより美味しい米—お米と生物多様性. 朝日新聞出版, 東京.

佐藤 洋一郎 (2012) 知ろう 食べよう 世界の米. 岩波書店, 東京.

佐藤 洋一郎 (2016) 稲と米の民族誌 アジアの稻作景観を歩く. NHK 出版, 東京.

佐藤 洋一郎 (2016) 食の人類史 ユーラシアの狩猟・採取、農耕、遊牧. 中央公論新社, 東京.

佐藤 洋一郎 (2020) 米の日本史 稲作伝来、軍事物資から和食文化まで. 中央公論新社, 東京.

佐藤 洋一郎・赤坂 恵雄 (2013) イネの歴史を探る. 玉川大学出版部, 東京.

滋賀県立琵琶湖博物館 (2023) 滋賀県立琵琶湖博物館 第31回企画展示 おこめ展—おこめがつなぐ私たちの暮らしと自然. 滋賀県立琵琶湖博物館, 滋賀.

静岡県くらし・環境部環境局自然保護課 (2019) まもりたい静岡県の野生生物 2019—静岡県レッドデータブック—動物編. 静岡県くらし・環境部自然保護課, 静岡.

静岡県くらし・環境部環境局自然保護課 (2020) まもりたい静岡県の野生生物 2020—静岡県レッドデータブック—植物・菌類編. 静岡県くらし・環境部自然保護課, 静岡.

静岡県埋蔵文化財センター (2017) 静岡県埋蔵文化財センター調査報告 54 上土遺跡・岳美遺跡. 静岡県埋蔵文化財センター, 静岡.

静岡県農林技術研究所 (2010) 静岡県田んぼの生き物図鑑. 静岡新聞社・創碧社, 静岡.

関慎太郎 (2012) ポケット図鑑 田んぼの生き物 400. 文一総合出版, 東京.

内山りゅう (2013) 田んぼの生き物図鑑 増補改訂新版. 山と渓谷社, 東京.

参考ウェブサイト

Food and Agriculture Organization of the United Nations 「FAOSTAT」 (<https://www.fao.org/faostat/en/>)

Kabeya, Y., T. Nakamura, and M. Hasebe 「KBY no PAGE 陸上植物の進化」 (https://www.nibb.ac.jp/evodevo/tree/00_index.html)

国土地理院「地図・空中写真閲覧サービス」 (<https://mapps.gsi.go.jp/maplibSearch.do#1>)

Stevens, P. F. 「Angiosperm Phylogeny Website. Version 14」 (<http://www.mobot.org/MOBOT/research/APweb/>)

谷謙二 「今昔マップ on the web」 (<https://ktgis.net/kjmapw/>)

附録 Appendix

附録① 展示物一覧

Appendix 1 List of Exhibited items

企画展「イネ・米・田んぼ」展示物一覧

章	名称	個数	単位	状態	所蔵
第一章 イネの自然史	オリザ・ブラキアンサ <i>Oryza brachyantha</i>	1	株	さく葉標本	国立科学博物館
	オリザ・ラティフォリア <i>Oryza latifolia</i>	1	株	さく葉標本	国立科学博物館
	オリザ・グラニュラタ <i>Oryza granulata</i>	1	株	さく葉標本	国立科学博物館
	オリザ・グランディグルミス <i>Oryza grandiglumis</i>	1	株	さく葉標本	国立科学博物館
	オリザ・エイチングeri <i>Oryza eichingeri</i>	1	株	さく葉標本	国立科学博物館
	オリザ・ルフィボゴン <i>Oryza rufipogon</i>	1	株	さく葉標本	国立科学博物館
	オリザ・ロンギグルミス <i>Oryza longiglumis</i>	1	株	さく葉標本	国立科学博物館
	オリザ・ブンクタータ <i>Oryza punctata</i>	1	株	さく葉標本	国立科学博物館
	オリザ・オフィシアリス <i>Oryza officinalis</i>	1	株	さく葉標本	国立科学博物館
	オリザ・メイエリアナ <i>Oryza meyeriana</i>	1	株	さく葉標本	国立科学博物館
	オリザ・ミニュタ <i>Oryza minuta</i>	1	株	さく葉標本	国立科学博物館
	オリザ・バルシイ <i>Oryza barthii</i>	1	株	さく葉標本	国立科学博物館
	オリザ・オーストラリエンシス <i>Oryza australiensis</i>	1	株	さく葉標本	国立科学博物館
	オリザ・アルタ <i>Oryza alta</i>	1	株	さく葉標本	国立科学博物館
	アフリカイネ <i>Oryza graberimma</i>	1	株	さく葉標本	国立科学博物館
	アジアイネ “ジャボニカ” <i>Oryza sativa</i> ssp. <i>japonica</i>	1	株	さく葉標本	国立科学博物館
	アジアイネ “インディカ” <i>Oryza sativa</i> ssp. <i>indica</i>	1	株	さく葉標本	国立科学博物館
	在来品種の粉「都」 unhulled rice of "Miyako"	1	群(複数粒)	乾燥資料	当館
	在来品種の粉「白玉」 unhulled rice of "Shiratama"	1	群(複数粒)	乾燥資料	当館
	在来品種の粉「伊勢錦」 unhulled rice of "Ise-nishiki"	1	群(複数粒)	乾燥資料	当館
	在来品種の粉「山田穂」 unhulled rice of "Yamada-nishiki"	1	群(複数粒)	乾燥資料	当館
	在来品種の粉「野条穂」 unhulled rice of "Nojo-ho"	1	群(複数粒)	乾燥資料	当館
	在来品種の粉「陸稻農林1号」 unhulled rice of "Rikuto-norin 1"	1	群(複数粒)	乾燥資料	当館
	静岡県水稻推奨品種「ひとめぼれ」 ears of "Hitomebore"	1	束	乾燥資料	静岡県農林技術研究所
	静岡県水稻推奨品種「なつしづか」 ears of "Natsu-shizuka"	1	束	乾燥資料	静岡県農林技術研究所
	静岡県水稻推奨品種「コシヒカリ」 ears of "Koshi-hikari"	1	束	乾燥資料	静岡県農林技術研究所
	静岡県水稻推奨品種「にじのきらめき」 ears of "Nijinokirameki"	1	束	乾燥資料	静岡県農林技術研究所
	静岡県水稻推奨品種「きぬむすめ」 ears of "Kinu-musume"	1	束	乾燥資料	静岡県農林技術研究所
	静岡県水稻推奨品種「にこまる」 ears of "Nikomaru"	1	束	乾燥資料	静岡県農林技術研究所
	静岡県水稻推奨品種「あいちのかおり SBL」 ears of "Aichinokaori SBL"	1	束	乾燥資料	静岡県農林技術研究所
	静岡県水稻推奨品種「葵美人」 ears of "Aoi-bijin"	1	束	乾燥資料	静岡県農林技術研究所
	静岡県水稻推奨品種「峰の雪もち」 ears of "Kinu-no-yukimochi"	1	束	乾燥資料	静岡県農林技術研究所
	静岡県水稻推奨品種「令和誉富士」 ears of "Reiwa-homare-fuji"	1	束	乾燥資料	静岡県農林技術研究所
	静岡県水稻推奨品種「誉富士」 ears of "Homare-fuji"	1	束	乾燥資料	静岡県農林技術研究所
	静岡県水稻推奨品種「山田錦」 ears of "Yamada-nishiki"	1	束	乾燥資料	静岡県農林技術研究所
一	ステンレス彫刻「野生稻の発芽」田辺 光彰 2002年 stainless steel sculpture "Germination of wild rice," Mitsuaki TANABE, 2002	1	作品	彫刻	日吉の森庭園美術館
第二章 米の歴史	イネのファン型ケイ酸体 (3000 倍模型) 3000x cast of fan-shaped opal phytolith of <i>Oryza</i>	1	個	模型	当館
	イネの花粉 (3000 倍模型) 3000x cast of pollen of <i>Oryza</i>	1	個	模型	当館

(続き)

章	名称	個数	単位	状態	所蔵
(続き)	弥生時代の炭化米 (塊) carbonized rice block at Yayoi era	2	個	乾燥資料	静岡県埋蔵文化財センター
	弥生時代の炭化米 (粒) carbonized rice grains at Yayoi era	2	群(多数粒)	乾燥資料	静岡県埋蔵文化財センター
	平安時代の炭化米 (粒) carbonized rice grains at Heian era	1	群(多数粒)	乾燥資料	静岡県埋蔵文化財センター
	鎌倉時代の炭化米 (塊) carbonized rice block at Kamakura era	1	個	乾燥資料	静岡県埋蔵文化財センター
第三章 環境と稲作	稻穂 (ラオス原産) ears of rice plant (Laos)	5	本	乾燥資料	当館
	稻穂 (日本産) ears of rice plant (Japan)	3	本	乾燥資料	当館
	稻穂 (タイ原産) ears pf rice plant (Thailand)	2	本	乾燥資料	当館
	稻穂 (ベトナム原産) ears of rice plant (Vietnam)	2	本	乾燥資料	当館
	精米 (フィリピン産) milled rice (Philippines)	1	群(多数粒)	乾燥資料	当館
	精米 (イタリア産) milled rice (Italy)	1	群(多数粒)	乾燥資料	当館
	精米 (タイ産) milled rice (Thailand)	1	群(多数粒)	乾燥資料	当館
	精米 (コシヒカリ) milled rice (Japan "Koshi-hikari")	1	群(多数粒)	乾燥資料	当館
	精米 (オーストラリア産) milled rice (Australia)	1	群(多数粒)	乾燥資料	当館
	精米 (カリフォルニア産) milled rice (California, U.S.A.)	1	群(多数粒)	乾燥資料	当館
	水稻栽培地の土 soil of paddy field	1	つかみ	乾燥資料	当館
	陸稻栽培地の土 soil of dry rice field	1	つかみ	乾燥資料	当館
	浮稻 floating rice	1	株	乾燥資料	当館
第四章 田んぼと生物多様性	アナグマ <i>Meles anakuma</i>	1	個体	剥製	当館
	ニホンカモシカ <i>Capricornis crispus</i>	1	個体	剥製	当館
	コウベモグラ <i>Mogera wogura</i>	1	個体	剥製	当館
	カヤネズミ <i>Micromys minutus</i>	1	個体	剥製	当館
	アライグマ <i>Procyon lotor</i>	1	個体	剥製	当館
	ハクビシン <i>Paguma larvata</i>	1	個体	剥製	当館
	クマネズミ <i>Rattus rattus</i>	1	個体	剥製	当館
	イノシシ <i>Sus scrofa leucomystax</i>	1	個体	剥製	当館
	ゴイサギ <i>Nycticorax nycticorax</i>	1	個体	剥製	当館
	ツバメ <i>Hirundo rustica</i>	1	個体	剥製	当館
	スズメ <i>Passer montanus</i>	1	個体	剥製	当館
	トビ <i>Milvus migrans</i>	1	個体	剥製	当館
	カルガモ <i>Anas zonorhyncha</i>	1	個体	剥製	当館
	ヒクイナ <i>Zapornia fusca</i>	1	個体	剥製	当館
	タゲリ <i>Vanellus vanellus</i>	3	個体	剥製	当館
	コサギ <i>Egretta garzetta</i>	1	個体	剥製	当館
	マムシ <i>Gloydius blomhoffii</i>	1	個体	剥製	当館
	ヤマカガシ <i>Rhabdophis tigrinus</i>	1	個体	剥製	当館
	シマヘビ <i>Elaphe quadrivirgata</i>	1	個体	剥製	当館
	ニホンカナヘビ <i>Takydromus tachydromoides</i>	2	個体	液浸標本	当館
	ヒガシニホントカゲ <i>Plestiodon finitimus</i>	2	個体	液浸標本	当館
	アカミミガメ <i>Trachemys scripta</i>	1	個体	剥製	当館

(続き)

章	名称	個数	単位	状態	所蔵
(続き)	クサガメ <i>Mauremys reevesii</i>	1	個体	剥製	当館
	トウキヨウサンショウウオ <i>Hynobius tokyoensis</i>	1	個体	液浸標本	当館
	アカハライモリ <i>Cynops pyrrhogaster</i>	1	個体	液浸標本	当館
	ニホンアガエル <i>Rana japonica</i>	2	個体	液浸標本	当館
	ヤマアカガエル <i>Rana ornativentris</i>	2	個体	液浸標本	当館
	ニホンアマガエル <i>Dryophytes japonicus</i>	5	個体	液浸標本	当館
	シュレーベルアガエル <i>Zhangixalus schlegelii</i>	3	個体	液浸標本	当館
	ヌマガエル <i>Fejervarya kawamurai</i>	5	個体	液浸標本	当館
	ナゴヤダルマガエル <i>Pelophylax porosus brevipodus</i>	1	個体	液浸標本	当館
	トノサマガエル <i>Pelophylax nigromaculatus</i>	1	個体	液浸標本	当館
	アフリカツメガエル <i>Xenopus laevis</i>	8	個体	液浸標本	当館
	ニホンウナギ <i>Anguilla japonica</i>	1	個体	液浸標本	当館
	アブラハヤ <i>Rhynchocypris lagowskii steindachneri</i>	1	個体	液浸標本	当館
	オイカワ <i>Opsarichthys platypus</i>	1	個体	液浸標本	当館
	カワバタモロコ <i>Hemigrammocyparis neglecta</i>	1	個体	液浸標本	当館
	カワムツ <i>Nipponocypris temminckii</i>	1	個体	液浸標本	当館
	ギンブナ <i>Carassius sp.</i>	1	個体	液浸標本	当館
	コイ <i>Cyprinus carpio</i>	1	個体	液浸標本	当館
	タイリクバタナゴ <i>Rhodeus ocellatus ocellatus</i>	1	個体	液浸標本	当館
	タモロコ <i>Gnathopogon elongatus elongatus</i>	1	個体	液浸標本	当館
	モツゴ <i>Pseudorasbora parva</i>	1	個体	液浸標本	当館
	ドジョウ <i>Misgurnus anguillicaudatus</i>	1	個体	液浸標本	当館
	トウカイコガタスジマドジョウ <i>Cobitis minamorii tokaiensis</i>	1	個体	液浸標本	当館
	ニシシマドジョウ <i>Cobitis sp. BIWAE type B</i>	1	個体	液浸標本	当館
	ヒガシシマドジョウ <i>Cobitis sp. BIWAE type C</i>	1	個体	液浸標本	当館
	ホトケドジョウ <i>Lefua echigonia</i>	1	個体	液浸標本	当館
	ナマズ <i>Silurus asotus</i>	1	個体	液浸標本	当館
	ミナミメダカ <i>Oryzias latipes</i>	1	個体	液浸標本	当館
	カダヤシ <i>Gambusia affinis affinis</i>	2	個体	液浸標本	当館
	タウナギ <i>Monopterus albus</i>	1	個体	液浸標本	当館
	オオクチバス <i>Micropterus nigricans</i>	1	個体	液浸標本	当館
	ブルーギル <i>Lepomis macrochirus macrochirus</i>	1	個体	液浸標本	当館
	カムルチー <i>Channa argus</i>	1	個体	液浸標本	当館
	シマヒレヨシノボリ <i>Rhinogobius tyoni</i>	1	個体	液浸標本	当館
	スミウキゴリ <i>Gymnogobius petschiliensis</i>	1	個体	液浸標本	当館
	ヌマチチブ <i>Tridentiger brevispinis</i>	1	個体	液浸標本	当館
	カワニナ属の一種 <i>Semisulcospira sp.</i>	1	個体	乾燥標本	個人
	サカマキガイ <i>Physa acuta</i>	1	個体	乾燥標本	個人
	スクミリンゴガイ <i>Pomacea canaliculata</i>	2	個体	液浸標本	個人
	タガイ <i>Sinanodonta japonica</i>	1	個体	乾燥標本	当館

(続き)

章	名称	個数	単位	状態	所蔵
(続き)	アメリカザリガニ <i>Procambarus clarkii</i>	1	個体	液浸標本	個人
	カワリヌマエビ属の一種 <i>Neocardina sp.</i>	2	個体	液浸標本	個人
	サワガニ <i>Geothelphusa dehaani</i>	1	個体	乾燥標本	個人
	タイリクカブトエビ <i>Triops sinensis</i>	2	個体	液浸標本	個人
	ゲンゴロウ <i>Cybister chinensis</i>	2	個体	乾燥標本	当館
	コガタノゲンゴロウ <i>Cybister tripunctatus lateralis</i>	1	個体	乾燥標本	当館
	シャープゲンゴロウモドキ <i>Dytiscus sharpi</i>	2	個体	乾燥標本	当館
	ハイロゲンゴロウ <i>Eretes griseus</i>	1	個体	乾燥標本	当館
	オオイチモンジシマゲンゴロウ <i>Hydaticus conspersus conspersus</i>	1	個体	乾燥標本	当館
	コシマゲンゴロウ <i>Hydaticus grammicus</i>	2	個体	乾燥標本	当館
	スジゲンゴロウ <i>Hydaticus satoi</i>	1	個体	乾燥標本	神奈川県立生命の星・地球博物館
	チビゲンゴロウ <i>Hydroglyphus japonicus</i>	2	個体	乾燥標本	当館
	ツブゲンゴロウ <i>Laccophilus difficilis</i>	2	個体	乾燥標本	当館
	ヒメゲンゴロウ <i>Rhantus suturalis</i>	2	個体	乾燥標本	当館
	ホソセスジゲンゴロウ <i>Copelatus weymanni</i>	2	個体	乾燥標本	当館
	マルガタゲンゴロウ <i>Graphoderus adamsii</i>	1	個体	乾燥標本	当館
	マルコガタノゲンゴロウ <i>Cybister lewisiensis</i>	1	個体	乾燥標本	当館
	ガムシ <i>Hydrophilus acuminatus</i>	1	個体	乾燥標本	当館
	キイロヒラタガムシ <i>Enochrus simulans</i>	2	個体	乾燥標本	当館
	コガムシ <i>Hydrochara affinis</i>	2	個体	乾燥標本	当館
	ヒメガムシ <i>Sternolophus rufipes</i>	2	個体	乾燥標本	当館
	オオミズスマシ <i>Dineutus orientalis</i>	1	個体	乾燥標本	当館
	イネミズソウムシ <i>Lissorhoptrus oryzophilus</i>	4	個体	乾燥標本	当館
	ハネナガイナゴ <i>Oxya japonica japonica</i>	1	個体	乾燥標本	当館
	ツマグロバッタ <i>Stethophyma magister</i>	1	個体	乾燥標本	当館
	イトアメンボ <i>Hydrometra albolineata</i>	1	個体	乾燥標本	神奈川県立生命の星・地球博物館
	ヒメイトアメンボ <i>Hydrometra procera</i>	1	個体	乾燥標本	神奈川県立生命の星・地球博物館
	ヒメアメンボ <i>Gerris latiabdominis</i>	1	個体	乾燥標本	神奈川県立生命の星・地球博物館
	ミズカマキリ <i>Ranatra chinensis</i>	2	個体	乾燥標本	神奈川県立生命の星・地球博物館
	ヒメミズカマキリ <i>Ranatra unicolor</i>	2	個体	乾燥標本	神奈川県立生命の星・地球博物館
	コオイムシ <i>Appasus japonicus</i>	2	個体	乾燥標本	神奈川県立生命の星・地球博物館
	オオコオイムシ <i>Diplonychus major</i>	2	個体	乾燥標本	神奈川県立生命の星・地球博物館
	タイコウチ <i>Laccotrephes japonensis</i>	2	個体	乾燥標本	神奈川県立生命の星・地球博物館
	タガメ <i>Kirkaldyia deyrolli</i>	1	個体	乾燥標本	当館
	マルミズムシ <i>Parapleia japonica</i>	2	個体	乾燥標本	神奈川県立生命の星・地球博物館
	クロチビミズムシ <i>Micronecta orientalis</i>	1	個体	乾燥標本	神奈川県立生命の星・地球博物館
	エサキコミズムシ <i>Sigara septemlineata</i>	1	個体	乾燥標本	神奈川県立生命の星・地球博物館
	ハラグロコミズムシ <i>Sigara nigroventralis</i>	1	個体	乾燥標本	神奈川県立生命の星・地球博物館
	クビホソコガシラミズムシ <i>Haliphus japonicus</i>	1	個体	乾燥標本	当館
	アカヒゲホソミドリカスミカメ <i>Trigonotylus caelestialium</i>	2	個体	乾燥標本	個人

附録① 展示物一覧

Appendix 1 List of Exhibited items

(続き)

章	名称	個数	単位	状態	所蔵
	アオクサカメムシ <i>Nezara antennata</i>	1	個体	乾燥標本	個人
(続き)	ミナミアオカメムシ <i>Nezara viridula</i>	1	個体	乾燥標本	個人
	イネカメムシ <i>Lagnotomus elongatus</i>	1	個体	乾燥標本	個人
	セジロウンカ <i>Sogatella furcifera</i>	2	個体	乾燥標本	個人
	ツマグロヨコバイ <i>Nephrotettix cincticeps</i>	2	個体	乾燥標本	個人
	ニカメイガ <i>Chilo suppressalis</i>	1	個体	乾燥標本	個人
	ツトガ <i>Ancylolomia japonica</i>	2	個体	乾燥標本	個人
	ナカモンツトガ <i>Chrysoteuchia porcelanella</i>	1	個体	乾燥標本	個人
	シロツトガ <i>Calamotropha paludella purella</i>	1	個体	乾燥標本	個人
	マユタテアカネ <i>Sympetrum eroticum eroticum</i>	2	個体	乾燥標本	当館
	マイコアカネ <i>Sympetrum kunkeli</i>	2	個体	乾燥標本	当館
	ナツアカネ <i>Sympetrum darwinianum</i>	2	個体	乾燥標本	当館
	アキアカネ <i>Sympetrum frequens</i>	2	個体	乾燥標本	当館
	ノシメトンボ <i>Sympetrum infuscatum</i>	2	個体	乾燥標本	当館
	コノシメトンボ <i>Sympetrum baccha matutinum</i>	2	個体	乾燥標本	当館
	ミヤマアカネ <i>Sympetrum pedemontanum elatum</i>	2	個体	乾燥標本	当館
	ミズアオイ <i>Monochoria korsakowii</i>	1	枚	さく葉標本	当館
	ミズオオバコ <i>Ottelia alismoides</i>	1	枚	さく葉標本	当館
	ヒルムシロ <i>Potamogeton distinctus</i>	1	枚	さく葉標本	当館
	イヌビエ <i>Echinochloa crus-galli</i> (sensu lato)	1	枚	さく葉標本	当館
	ホソバヒメミソハギ <i>Ammannia coccinea</i>	1	枚	さく葉標本	当館
第五章 人・米・未来	水田遺構 (静岡県上土遺跡) Ruins, middle Shizuoka	1	面	剥取標本	静岡県埋蔵文化財センター
第六章 米に見る 東アジア文化	米 (こめ) rice 小麦 (こむぎ) wheat 大麦 (だい麦) barley 粟 (あわ) foxtail millet 稗 (ひえ) Japanese millet	1 1 1 1 1	袋 袋 袋 袋 袋	乾燥資料 乾燥資料 乾燥資料 乾燥資料 乾燥資料	個人 個人 個人 個人 個人

(続き)

章	名称	個数	単位	状態	所蔵
(続き)	麻 (あさ) hempseed	1	袋	乾燥資料	個人
	黍 (きび) common millet	1	袋	乾燥資料	個人
	蕎麦 (そば) buckwheat	1	袋	乾燥資料	個人
	大豆 (だいず) soybean	1	袋	乾燥資料	個人
	小豆 (あずき) adzuki bean	1	袋	乾燥資料	個人
	ジャボニカ米 Japonica rice	1	群(多数粒)	乾燥資料	個人
	インディカ米 Indica rice	1	群(多数粒)	乾燥資料	個人
	米麵: フォー Rice noodle: Phở	1	袋	乾燥食品	個人
	米麵: ブン Rice noodle: Bún	1	袋	乾燥食品	個人
	米麵: ビーフン Rice noodle: mifēn (or bi-hún)	1	袋	乾燥食品	個人
	ライスペーパー Rice paper	1	袋	乾燥食品	個人
	餅製品: トック Korean rice cake "tteok"	1	袋	乾燥食品	個人
	餅製品: トッポギ Korean rice cake "tteokbokki"	1	袋	乾燥食品	個人
	餅製品: 丸餅・角餅 various shaped rice cakes in Japan	11	個	乾燥食品	個人
	ラオラオ Lao-Lao	1	甕	飲料品	個人
	日本酒 rice wine (sake)	3	瓶	飲料品	個人
	マッコリ Korean alcoholic beverage "makgeolli"	3	瓶	飲料品	個人
	パガジ pagaji	1	個	乾燥資料	個人
	紹興酒 Shaoxing rice wine	3	瓶	飲料品	個人
	米焼酎 rice shochu	3	瓶	飲料品	個人
	泡盛 awamori (millet brandy)	2	瓶	飲料品	個人
	ミキ non-alcoholic rice beverage "miki" in Ryukyus	1	缶	飲料品	個人
	シック non-alcoholic rice beverage "sikhye" in Korea	1	缶	飲料品	個人
	チューニヤン non-alcoholic rice sweetener "Jiuniāng"	1	瓶	飲料品	個人
	納豆 (藁) straw case of fermented soybeans "natto"	3	包	乾燥資料	個人
	鳥型木像 (模型) reproductive model of bird-shaped image	1	個	模型	静岡市立登呂博物館
	神棚 (神饌含む) household Shinto altar "kamidana"	1	個	—	当館

附録② 広報田畠寵物 Appendix 2 Printed Matters for Public Information

Appendix 2 Printed Matters for Public Information

企画展ポスター (A2 サイズ)

メインビジュアルには、第6回ふじミュー写真コンテスト一般部門グランプリを受賞した作品「マジックアワー絶景棚田」(撮影:小栗進)を用いた (一部加工、撮影者許諾済)。

附録② 広報田畠展示物 Appendix 2 Printed Matters for Public Information

企画展チラシ (A3 サイズ紙を二つ折りにしたもの、表紙・裏表紙含めて計 4 ページ)

企画展観覧券 (計 5 種) ▶

- 一般個人 600 円 (前売料金 500 円)
- 学生及び 70 歳以上の方 300 円 (前売料金 200 円)
- 未就学児・その他 無料
- 一般団体 (20 名以上) 500 円
- 招待券
- 裏面 (全種共通)

附録② 広報田畠収穫物

Appendix 2 Printed Matters for Public Information

◀ 静岡県庁前設置の大看板

幅 2,420 × 高 2,441 mm

掲載期間：2023年12月28日～2024年1月31日

関連イベント（対談・講演会）ポスター（A2サイズ）▶

▼ 館前設置の横断幕 | 幅 5750 × 高 890 mm | 掲載期間：2023年10月23日～2024年3月24日

附録③ 関連グッズ Appendix 4 Exhibition-related Goods

企画展 イネ・米・田んぼ 一人がつくる米_米がつくる世界ー

ふじのくに地球環境史ミュージアム企画展
イネ・米・田んぼ
ー人がつくる米_米がつくる世界ー

当館
オリジナル
全8種

田んぼの生きもの 缶バッジ を当てよう！

この自動販売機を使うにはメダルが必要です。
次のどちらかの方法でメダルをもらえます。

方法1 企画展『イネ・米・田んぼ』をみて
クイズに答える ※対象：学生・未就学児

方法2 図鑑カフェ売店（ペルチ）で500円以上
の買い物をする ※対象：どなたでも

企画展開催期間中（～3月24日）のみの特別企画！

▲ カブセル自動販売機の表紙

オリジナル缶バッジは、2F 図鑑カフェに設置したカブセル自動販売機で入手できる
ようにした。カブセル自動販売機を回すにはメダルが必要であり（一回につき一枚）、
メダルの入手には、企画展『イネ・米・田んぼ』に関するクイズに正解するか（対象：
学生・未就学児）、図鑑カフェ売店で500円以上の買い物をするか（対象：どなたでも）
が必要。企画展『イネ・米・田んぼ』開催期間中のみの特別企画。

▲ オリジナル缶バッジ（計8種） 径32mm（実物大）

- 1 アナグマ
- 2 タイリクカブトエビ
- 3 シュレーゲルアオガエル
- 4 ナマズ
- 5 ゲンゴロウ
- 6 ミヤマアカネ
- 7 ニホンマムシ
- 8 ミズアオイ

対談・講演会 佐藤館長と楽しむ対談シリーズ | 場所：ミュージアム2F講堂

【野生イネに魅せられた天才—彫刻家・田辺光彦—】

開催日時 2024年1月14日 [日] 14:00～15:00

内 容 アジアの野生イネに魅せられ、その保全への想いを作品に込めた彫刻家・田辺光彦氏。この世界的アーティストの素顔と情熱を、身近に接してきたお二人だからこそ知る秘話も交えて語りました。

【米と和食—これほど環境にやさしい「食」はない—】

開催日時 2024年2月25日 [日] 14:00～15:00

内 容 日本の風土と人々の営みが織りなす食文化「和食」。その特性や可能性などについて、静岡が誇る気鋭の日本料理人・内海氏と和食文化の伝道者・佐藤館長が「米」の視点から語りました。

【自然農と棚田の再生—静岡市民活動としての米作り24年—】※前半は天岸氏による講演

開催日時 2024年3月17日 [日] 15:00～16:00

内 容 「耕さず、農薬・肥料は使わず、草や虫を敵としない」という「自然農」。この農法をベースに静岡市郊外・清沢で進められる自由な雰囲気での米作りを紹介し、究極の（？）人間の営みについて語りました。

体験講座

親子で楽しめるさまざまな体験講座 | 講師／案内役：ミュージアムサポーター | 場所：ミュージアム2F講堂／3F実習室

【縄をなう】

開催日時 2024年1月20日 [土] 13:00～15:00

講 師 駿河一郎（サポート：長谷川望）

内 容 稲わらを使って縄をない、鶴のお飾り作りに挑戦しました。協力：増田 作一郎（静岡市立登呂博物館ボランティア）。

【雑穀米★オールスター】

開催日時 2024年2月17日 [土] ①10:40～12:10

②14:00～15:30

講 師 長谷川望（サポート：落合康彦）

内 容 雜穀米に含まれる実を仕分けて、それぞれがどのような植物なのかを紹介しました。

【米をつく】

開催日時 2024年2月18日 [日] 13:00～14:00

講 師 駿河一郎（サポート：落合康彦）

内 容 身近な道具を使って米をつき、もみ殻を外してみました。三穂神社（静岡市）に伝わる米を使った伝統儀式についても紹介しました。

【甘酒と水あめ】

開催日時 2024年3月2日 [土] 13:00～15:00

3月3日 [日] 13:00～15:00

講 師 篠崎勇（サポート：駿河一郎）

内 容 米や麦芽を使って、甘酒と水あめ作りに挑戦しました（2日間のイベント）。

ギャラリートーク

展示制作を担当したミュージアム研究員による展示解説 | 場所：ミュージアム2F企画展示室 | 時間（共通）：14:00～14:30

第1回 2023年11月19日 [日] | 担当：渋川浩一

第2回 2024年1月21日 [日] | 担当：早川宗志

第3回 2024年3月17日 [日] | 担当：中西利典

サイエンスカフェ

ミュージアム研究員によるサイエンストーク | 場所：ミュージアム2F図鑑カフェ | 時間（共通）：14:00～14:45

【テーマ1 田んぼは豊かな自然の象徴か？】

自然豊かに見える田んぼで、いま何が起きているのかを考えました。

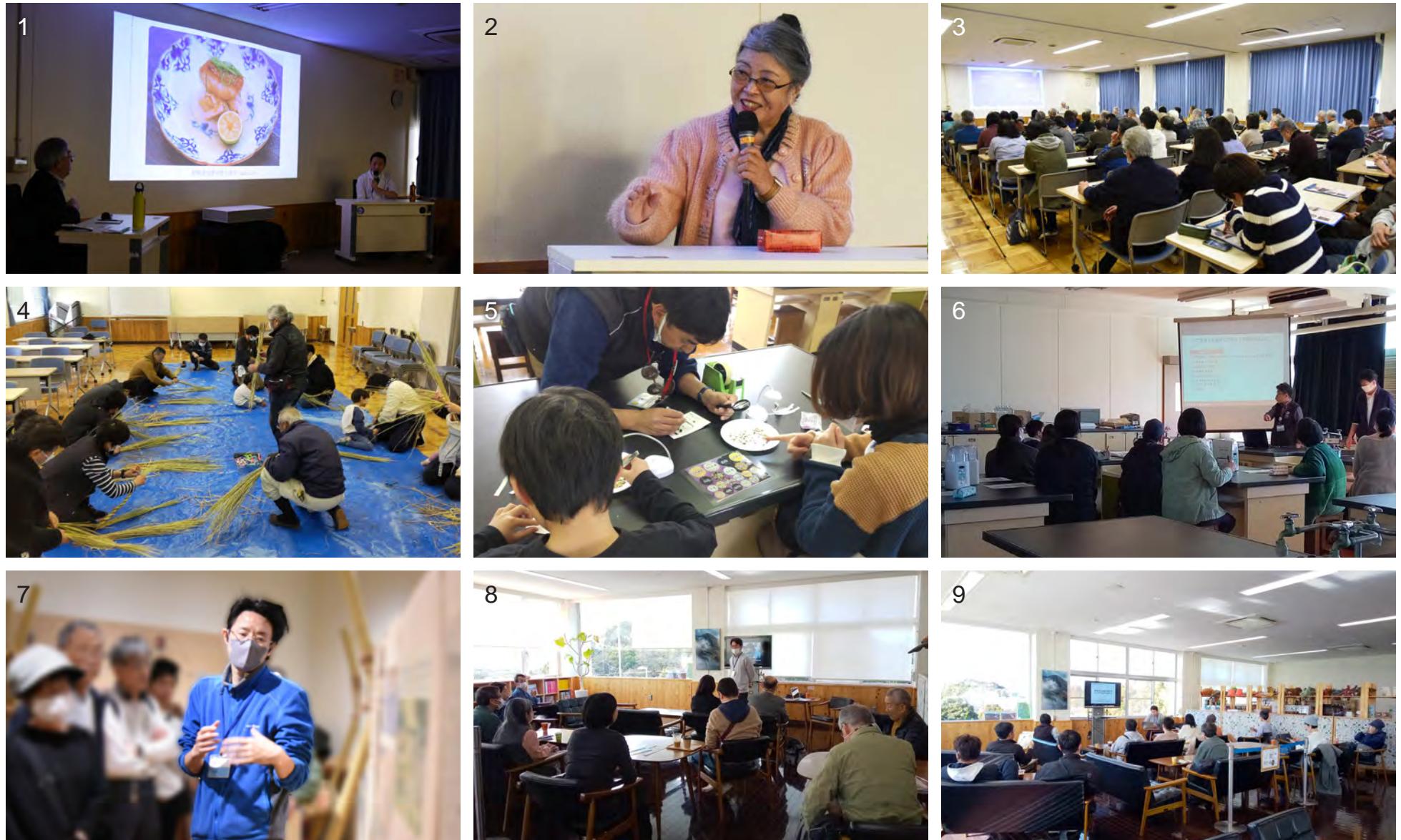
第1回 田んぼの生き物今昔 | 2023年11月26日 [日] | 講師：岸本年郎

第2回 田んぼの魚の由来とゆくえ | 2023年12月3日 [日] | 講師：渋川浩一

第3回 田んぼにくらす両生類 | 2023年12月17日 [日] | 講師：岡宮久規

【テーマ2 アジアで出会った旨いもの：米編】

アジア諸国を渡り歩いてきたミュージアム研究員が、現地の様子と旨いものについて語りました。


第1回：メコンと米と旨いもの 2024年2月10日 [土] 講師：渋川浩一

第2回：一日一麺！ミャンマー・タイの化石調査から見えてきた米麺の魅力 2024年2月24日 [土] 講師：西岡佑一郎

第3回：野菜探しの旅と調査メシ～ヒマラヤ南麓から日本まで～ 2024年3月2日 [土] 小川滋之

附録④ 関連イベント Appendix 4 Exhibition-related Events

▲ 関連イベント会場の様子

1 対談「米と和食」(2024年2月25日) 2 対談「野生イネに魅せられた天才」(2024年1月14日) 3 対談・講演会「自然農と棚田の再生」(2024年3月17日) 4 体験講座「縄をなう」(2024年1月20日) 5 体験講座「雑穀米★オールスターズ」(2024年2月17日)
6 体験講座「甘酒と水あめ」(2024年3月2~3日) 7 ギャラリートーク (2024年3月17日) 8 サイエンスカフェ (2024年2月24日) 9 サイエンスカフェ (2024年3月2日)

謝 辞

本企画展開催にあたり、以下の機関・個人を始めとする多くの方々にご協力を賜りました。ここに記して厚く御礼申し上げます（50音順、敬称略）。

機関等 | 小國神社御田植祭伝承会

神奈川県立生命の星・地球博物館

韓国中央博物館

国土地理院

国立科学博物館

株式会社 小峰書店

埼玉大学教育学部谷謙二研究室

NPO 法人 静岡県自然史博物館ネットワーク

静岡県農林技術研究所

静岡県富士山世界遺産センター

静岡県埋蔵文化財センター

静岡市立登呂博物館

有限会社 静岡木工

神宮農業館

総合病院国保旭中央病院

台湾故宮博物館

千葉県立房総のむら

中国駐東京観光代表処

公益財団法人 日吉の森文化財団

富士山かぐや姫ミュージアム

森町教育委員会

個人 | 天岸 祥光

石川 隆二

井戸 和就

宇田津 徹朗

内海 亮

江村 薫

小栗 進

苅部 治紀

岸本 圭子

駿河 一郎

田邊 陵光

田邊 美紗代

増田 作一郎

Dinh Thi Lam

企画展 イネ・米・田んぼ 一人がつくる米_米がつくる世界—

主催 | ふじのくに地球環境史ミュージアム

協力 | 公益財団法人 日吉の森文化財団

NPO 法人 静岡県自然史博物館ネットワーク

小栗 進

Dinh Thi Lam・石川 隆二（弘前大学）

企画運営 | ふじのくに地球環境史ミュージアム

展示施工 | 株式会社 ニホンディスプレイ

展示デザイン | 石河 孝浩

模型製作 | アンフィ合同会社

ふじのくに地球環境史ミュージアム企画展フォトブック

イネ・米・田んぼ 一人がつくる米_米がつくる世界—

監修 | 佐藤 洋一郎（ふじのくに地球環境史ミュージアム）

執筆 | 渋川 浩一・岸本 年郎・中西 利典・小川 滋之・早川 宗志・
西岡 佑一郎・岡宮 久規（ふじのくに地球環境史ミュージアム）

編集・DTP | 渋川 浩一（ふじのくに地球環境史ミュージアム）

発行 | ふじのくに地球環境史ミュージアム

〒 422-8017 静岡県静岡市駿河区大谷 5762

発行日 | 2025年3月31日

写真・本文・図版の無断転載をお断りします。

© 2025 Museum of Natural and Environmental History, Shizuoka. All rights reserved.

百年後も美味しいご飯を食べられますように。

ふじのくに地球環境史ミュージアム
Museum of Natural and Environmental History, Shizuoka